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SECTIONI

INTRODUCTION

Recently, there has been muchinterest in the problem of restructur-

ing the control law of aircraft following the failure of control surfaces

or actuators (References 1,2,3). This interest is motivated in part by

two incidents involving commercial aircraft. In the case of Delta flight

1080 on April 12, 1977, the left elevator became stuck in the 19" up

position at takeoff (Reference 4). The pilot was able to compensate for

the failure, in part by manipulating thrust to control the pitch axis.

However, the pilot of the DCI0 that crashed in Chicago (Reference 5) was

unable to recover from the left engine breaking loose and the resulting

retraction of the left wing's outboard leading edge slats. Simulations

indicate that the aircraft could have been flown if impending stall con-

ditions had been recognized and the proper corrective action taken.

Restructuring the control system on-line to counteract the effect of

these failures may be one solution to such problem situations. Although

the need for restructurable control has been demonstrated for state-of-

the-art aircraft systems, it can be expected to be most applicable to

future aircraft where redundant control surfaces will very likely be

extensively employed.

A feasible and practical restructurable control system requires the

correct and timely detection and isolation of the control system failure

so that the proper corrective action can be taken. The evaluation of

various failure detection and isolation (FDI) algorithms for application

in aircraft restructurable flight control systems is the focus of this



interim report. The work described was conducted by the Charles Stark

Draper Laboratory, Inc. (CSDL)for the NASALangley Research Center under

contract NASI-17556entitled, "Evaluation of Failure Detection and Iden-

tification Techniques for Application in Aircraft Restructurable Control

Systems." The specific goals of this effort are twofold:

o To analyze and compare various failure detection and identifica-

tion techniques to determine their usefulness in detecting and

identifying failures in an aircraft flight control system, exclud-

ing sensor and flight control computer failures. Issues such as

the types of failures which can be detected, the degree of failure

that can be detected, the time delay between failure and detec-

tion, etc. are to be addressed. This evaluation should also

consider the maturity, reliability, false alarm performance,

robustness and computational burden of each technique.

o To develop a system monitoring strategy to implement the failure

detection and identification techniques. This strategy should

identify the mix of sensors and analytic redundancy; that is, the

mix of direct measurement of failures versus the computation of

failures.

Three specific FDI algorithms were evaluated under this study: the

detection filter, the Generalized Likelihood Ratio test and the Orthogon-

al Series Generalized Likelihood Ratio test. The detection filter

(References 6,7,8) has the form of an observer, much like that of a Kal-

man filter. The feedback gain matrix is chosen so that each type of

failure produces a uniquely defined residual. The FDI system is there-

fore insensitive to the mode of the failure, be it bias, ramp, etc. A

shortcoming of the detection filter is that its application to time-

varying systems is limited.

Basic detection filter theory assumes a system with no direct

input-output coupling. This assumption is violated in the aircraft

application considered in this study due to the use of acceleration



measurementsfor detecting and isolating failures. With this coupling,
residuals produced by control surface failures mayonly be constrained to

a knownplane rather than to a single direction as in the case of the

basic detection filter. A detection filter design with such planar fail-
ure signatures is considered and the design issues associated with it

addressed. In addition, a modification to the basic detection filter, to
constrain the residual to a single knowndirection even with direct

input-output coupling, is also presented. The approach employed is to

use secondary filtering of the detection filter residuals to produce
unidirectional failure signals.

The Generalized Likelihood Ratio (GLR) test (Reference 9) is derived

based upon the assumption of a step failure. The magnitude of the

failure and its time of occurrence are estimated using maximumLikelihood
Estimation. These estimates are used to form a likelihood ratio which is

the test statistic.

The third algorithm investigated is the Orthogonal Series General-

ized Likelihood Ratio (OSGLR) test (Reference 10). This algorithm

assumes a failure in the form of a truncated series of orthonormal basis

functions. The coefficients of the series expansion are estimated using

maximum likelihood estimation and a generalized likelihood ratio is

formed using these estimates. The rationale for adopting this approach

is that most failures should be represented fairly well using a truncated

orthogonal series expansion and this algorithm should be more robust to

failure mode uncertainty than the conventional GLR test.

The three algorithms just described were evaluated by testing their

ability to detect and isolate control surface failures in a nonlinear

simulation of a C-130 transport aircraft. Elevator, rudder, aileron and

flap failures were investigated.

This report is organized as follows. Section 2 describes the C-130

aircraft and simulation used to evaluate the FDI algorithms under consid-

eration. Basic detection filter theory and its application to restruc-



turable control is addressed in Section 3, while the modified version of

the detection filter is discussed in Section 4. Both GLRtests are

evaluated and comparedin Section 5. It was found during the course of
this study that failures of someaircraft controls are difficult to

distinguish because they have a similar effect on the dynamics of the

vehicle. Quantitative measuresfor evaluating the distinguishability of

failures are considered in Section 6. Section 7 is devoted to a compari-

son of the FDI algorithms considered based upon their ability to detect

and isolate failures in aircraft systems in general and the C-130 in

particular. Considerations in the development of a system monitoring

strategy in a transport aircraft are discussed in Section 8. The

material described in the report is summarized and the major conclusions

presented in Section 9. Appendix A includes a description of the method-

ology employed to develop the linear model of the C-130 aircraft required

for each of the FDI algorithms. The discrete time version of the

detection filter is briefly described in Appendix B.
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SECTION2

C-130 SIMULATIONDESCRIPTION

2.1 Introduction

The FDI algorithms under consideration will be evaluated by

testing their ability to detect and isolate control surface and flap

failures that have occurred in a simulation of a Lockheed C-130 air-

craft. The C-130 aircraft is a military, medium- to long-range transport

propelled by four turboprop engines located on a high wing. The particu-

lar version of the C-130 aircraft used for this program has short takeoff

and landing (STOL) capability provided by trailing-edge double-slotted

flaps.

2.2 Simulation Description

The simulation of the C-130 aircraft uses the standard six

degree-of-freedom aircraft nonlinear equations of motion. The aero-

dynamic forces and moments are described by one-, two-, or three-

dimensional look-up tables. These look-up tables are functions of angle

of attack, sideslip angle, thrust, flap deflection, or the control sur-

face deflections. Each of the four engines are assumed to provide the

same thrust. Actuator dynamics have been included; however, sensor

dynamics were not included.

The surfaces available for control of the aircraft are the

ailerons, flaps, rudder and elevator. The simulation allows for

independent motion of the left and right ailerons and the left and right

flaps so that failures of these individual surfaces could be simulated

5



and used along with rudder and elevator surface failures to evaluate the

performance of the FDI algorithms. Since aileron and flap failures are

similar in their effect on the dynamics of the vehicle, detecting and
isolating aileron and flap failures should provide an adequate test for

the various algorithms to be evaluated.

The eleven measurementsavailable for detecting and isolating
failures are those typically available onboard aircraft. Thesemeasure-

ments are listed in Table 2.1, along with the six control inputs

described above and the ten states that describe the aircraft dynamics.

The measurementsare generated in the simulation by superimposing

zero-mean Gaussian distributed noise on the output variables. The noise
statistics used for this study are shownin Table 2.2.

Wind turbulence is also incorporated in the simulation. The

turbulence velocity along each body axis is modeled by passing white

noise through shaping filters to produce signals with desired one-

dimensional power spectral densities. The Dryden form of the spectra,

defined in Reference 11, is modeled. This reference suggests an

intensity of 1.98 m/s (6.5 ft/s) for clear air turbulence at the altitude

of 304.8 m (1000 ft) used in this evaluation. However, this level

characterizes severe turbulence and a less severe level was selected for

initial evaluation. Therefore, an intensity of 0.3 m/s (I ft/s) was used

to obtain the results presented in this report unless otherwise noted.

The turbulence scale lengths were the clear air values defined in Section

3.7.3.2 of Reference 11.

Each of the FDI algorithms evaluated requires a linear model of

the system. Appendix A includes a discription of the methodology

employed to develop the linear model of the C-130 aircraft for this

purpose.

6



Table 2.1. Inputs, Outputs, and States of the C-130 Aircraft

Inputs

Elevator

Right aileron

Left aileron

Right flap

Left flap

Rudder

Outputs

Airspeed

Acceleration at the cg along the y body axis

Acceleration at the cg along the z body axis

Angular velocity about the x body axis I

Angular velocity about the y body axis 2

Angular velocity about the z body axis 3

Roll

Pitch

Yaw

Altitude rate

Altitude

States

Airspeed

Sideslip angle

Angle of attack

Angular velocity about the x body axis I

Angular velocity about the y body axis 2

Angular velocity about the z body axis 3

Roll

Pitch

Yaw

Altitude

I Will be referred to as body axis roll rate.

2 Will be referred to as body axis pitch rate.

3 Will be referred to as body axis yaw rate.
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Table 2.2. Standard Deviation of Sensor Noise

SENSOR STANDARD DEVIATION

Airspeed

Accelerometers

Roll Rate Gyro

Pitch and Yaw Rate Gyros

Attitude Gyros

Altitude Rate

Altitude

3,35 m/s

• 3 m/s 2

°0024 rad/s

°0007 rad/s

,01 radians

.08 m/s

3.05 m

11 ft/s

°98 ft/s 2

°1375 deg/s

• 04 deg/s

°573 degrees

°25 ft/s

10 ft

8



SECTION 3

THE DETECTION FILTER

3.1 Detection Filter Review I

The evaluation of the basic detection filter is considered in this

section. A block diagram of a nonlinear system and its detection filter

is shown in Figure 3.1. For this study the actuator dynamics were

assumed to be modeled perfectly. Therefore, the control surface deflec-

tions of the nonlinear system, _(t), and the control surface deflections

input to the detection filter, u'(t), are equal unless an actuator fail-

ure has occurred. A linear model of the system in its nominal operating

condition is incorporated in the detection filter. Note that there is no

direct coupling between the inputs and the outputs. (Direct input-to-

output coupling will be considered in Section 3.2.) Any discrepancy

between the system sensor outputs and the simulation of those outputs

generated by the filter model is fed back to the filter input through the

gain matrix K. One of the requirements on the design of the detection

filter is that K be chosen to make the filter stable. Thus, as long as

the system remains in its nominal operating condition, any initial condi-

tion errors of the filter will die away and the filter will track the

behavior of the system. The output error, r(t), is in that case zero

except for disturbances, noises, or other real system effects not modeled

in the filter.

1 Much of this detection filter description is taken from Reference 12.

9
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If one of the system components fails, the actuator models or the

filter no longer model the actuators, the system, or the sensors accu-

rately. It is clear, then, that the output error will be significantly

different from zero following the failure of a system component. This

would be true of any filter which models the nominal system; it would be

true, for example, of a Kalman filter which estimates the state of this

system. But the failure detection filter is designed under a different

set of constraints than other filters; it is designed to hold the output

error corresponding to any one component failure in one direction only.

Thus a component failure is detected by observing a significant magnitude

in the output error; the failed component is identified by observing the

direction of that significant error in the space of r(t).

Perhaps the most important advantage of this approach to FDI is that

the behavior described above does not depend in any way upon the mode of

the component failure. Many other forms of FDI are tuned to hypotheses

about the mode of component failures. But in most cases one cannot real-

istically expect to enumerate a comprehensive list of possible failure

modes and characterize somehow the behavior of the component following

each of those modes of failure. Although the specification of this kind

of information is, in principle, useful and may be expected to permit

more sensitive failure detection, the uncertainties involved in specify-

ing failure mode information may more than offset such a potential

advantage. No assumption with regard to the mode of failure will be made

in this section.

The theory of the failure detection filter, in its present state,

applies to a linear, time-invariant system. In its application to air-

craft the inherently nonlinear behavior of the vehicle will be linearized

and any discrepancy between the actual system and the model of it in the

filter will produce an output residual which contributes to the back-

ground against which the output due to failures must be detected. The

continuous-time development is presented in this section. As the

ii



detection filter will actually be implemented in a digital computer, the

extension to discrete-time is stated in Appendix B.

3.1.1 System and Filter Models

The linear, continuous-time analytic model of the perturbations

about the operating point of the nonlinear system may be written in the

form

= Ax + Bu (3.1)

y = Cx (3.2)

Here _ is the state vector characterizing the system, u is the input or

control vector and_is the vector of measurements available from the

system sensors. This development will not consider the effect of noises

disturbing the system nor corrupting the measurements. Those effects

will be evaluated in a simulation of the system with its detection

filter. Note that the delta (A) notation for the linear state, input,

and measurement vectors used in Figure 3.1 has been dropped for conven-

ience. This notation change produces an ambiguity in that the same

symbols are used for both the nonlinear and linear state, input, and

measurement vectors. However, as detection filter theory is limited to

linear systems, the symbols should be understood as referring to the

linear state, input, and measurement vectors.

As seen in Figure 3.1, the detection filter state and residual

satisfy

where

x' = Ax' + Bu' + Kr (3.3)

= Z - _' (3.4)

Z' = c_' (3.5)

12



This r is the accessible output error.
error

Define in addition the full state

q = x- x' (3.6)

In the absence of failures, and supposing that the filter has an accurate

model of the system, this error satisfies the differential equation

_q =
-- m

= (A - KC)q (3.7)

One of the requirements on the design of the detection filter is that K

must be chosen to make (A - KC) stable. Thus even though the filter may

not be initialized to match the system initial conditions, the error will

die out and then x'(t) will track x(t). So a detection filter is a state

estimating filter, but that is not its primary purpose.

3.1.2 Model of a Failure

First consider an actuator failure. In Eq. (3.1) each element of

relates to one actuator. Thus the corresponding column of B expresses

how that actuator drives the system state. Call the column of B corre-

sponding to the ith actuator b.. If that actuator fails, u.(t) will not
-I 1

behave as expected. This can be modeled by changing Eq. (3.1) to

= Ax + Bu' + b.n(t) (3.8)

where n(t) is an arbitrary scalar function of time expressing the differ-

ence between what the failed actuator is doing and what the nominal model

says it should be doing. If, for example, an actuator fails by sticking

in the zero position, then n(t) = - u_(t) where u!(t) is the expected
1 1

actuator position time history. The fact that n(t) is treated as an

arbitrary function is the mathematical expression of the fact, cited

13



previously, that we will not depend on any information about the mode of

component failures.

With the system behavior given by _q. (3.8) and the detection

filter characterized by Eq. (3.3), the error in the presence of an

actuator failure obeys the differential equation

= (A - KC)q + bin(t) (3.9)

The output error is then

r = y - y'
m -- w

= Cq (3,10)

In addition to making the filter stable with favorable transient charac-

teristics, K is designed to restrict the response of Eq. (3.9) to a sub-

space of the full space of _, which has a projection through C to the

output space having one dimension only. This property is independent of

n(t) and depends only on the vector b., which gives the direction in
-l

state space in which the failed actuator drives the state error. The

component whose failure is to be detected is therefore characterized, for

the purpose of detection filter design, by b.. It is called the event

vector for this particular failure. Any scalar multiple of b. can be
-l

used as its magnitude is of no consequence; it is the direction of b.

that is important.

If it is possible to design a detection filter that restricts the

output error (residual) due to the failure event b. to one dimension, the
-l

direction of the residual will be Cb.. Only if the Cb. corresponding

to all the b. assigned to one detection filter are linearly independent
-l

can their output errors be restricted to single, orthogonal directions in

the output space or in any transformation of the output space. If the

Cb. are not linearly independent, one may wish to remove one or more b.

14



from the group to achieve independence. This limits the numberof

failures which can be identified by one filter to the numberof

independent measurementswhich are available.

However, there is one exception to the above.

defined has the property
If any b. as first-l

Cb. = 0 (3.11)
-I

then that event vector should be replaced by b'
-i' which is the first

vector in the sequence

b! k) = k= 1,2,... (3.12)
-1 --1

for which

Cb! k) # 0 (3.13)
-I

In the above discussion it was assumed that this redefinition of b. has
-l

been made whenever necessary, and the resulting event vector was still

referred to as b. for convenience.
-i

In the case of a sensor failure, for a sensor whose output is not

fed back through a controller to the system input, the modeling is very

similar but the effect is more complex. In the output expression,

Eq. (3.2), each element of Z is one sensor output. The corresponding row

of C determines the linear combination of states which characterize that

measurement. If the ith sensor fails, the result is modeled as

y = Cx + v.n(t) (3.14)

where again n(t) is an arbitrary scalar function and v. is a vector whose
-1
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elements are zero except for the ith which is I. This represents an

arbitrary discrepancy between the sensor output after failure and the

nominal output. The filter error in this case obeys the relations

= (A - KC)q - k.n(t) (3.15)

= Cq + zin(t) (3.16)

The arbitrary function n(t) appears both at the input to the error dif-

ferential equation and in the output relation. The input direction, _i'

is in this case the ith column of the detection filter gain matrix, K.

As in the case of actuator failures, it may be possible to restrict

the residual produced by the k.n(t) term to a single direction. For the
-1

sensor failure case, the direction would be Ck.. However, in general,
-i

this direction will not be the same as the direction v. which appear di-
-I

rectly in the residual expression, Eq. (3.16). Thus the residual, in the

case of failures of sensors which do not feed back into the system

through a controller, can be restricted to a plane but not a line. This

plane is defined by the vectors Ck. and v..
-i -I

Failures of sensors whose output is fed back through a controller to

the system input may be modeled in the same manner as actuator failures

(Eq. (3.8)). This is true also for significant changes in system

dynamics corresponding to changes in the elements of A or B. For these

cases, b. is no longer necessarily a column of B but a general event
-i

vector which appropriately models the failure. As in the case of actua-

tor failures, the residual produced by these failures may be restricted

to a line defined by Cb..
-i

3.2 The Effect of Explicit Coupling of Inputs to Outputs

The development of the detection filter to date, as discussed in

Section 3.1, has assumed that there is no direct coupling between the

inputs and the outputs. However, there is direct input-output coupling

16



due to the lateral and normal acceleration measurementsavailable on-

board the C-130 aircraft chosen for use in this study. This coupling

results in a nonzero D matrix in the linearized system model:

= Ax + Bu (3.17)

Z = C_ + D_ (3.18)

The effect of this coupling on actuator failure signatures will be

presented here. Only actuator failures are considered since this is the

type of failure of interest in the Restructurable Controls Program.

Consider a failure in the ith actuator. The actual control

surface deflections, u(t), can be expressed as the sum of the expected

control surface deflections input to the detection filter, u'(t), and the

difference in the actual and expected ith control surface deflection

n(t).

u(t) = u'(t) + e.n(t) (3.19)

e. is a column vector with zeros in every row except for a one in the ith
-I

row. As before, no assumption has been made with regard to the actual

form of n(t). A model of the effect of the failure on the system is

developed by substituting Eq. (3.19) into Eqs. (3.17) and (3.18).

= Ax + Bu' + b.n(t) (3.20)

y = Cx + Du' + d.n(t) (3.21)

Here, d. is the ith column of the D matrix. The differences between
-1

the actuator failure model with input-output coupling and the model with-

out coupling are the two D matrix terms in the measurement equation.

17



The detection filter is still of the form given in Eqs. (3.3) and

(3.4). These equations are repeated here for reference.

x' = Ax' + Bu' + Kr (3.3)

= Z - X' (3.4)

However, the expression for _' now contains a nonzero D matrix term

y' = Cx' + Du' (3.22)

Given the system behavior in response to an actuator failure (Eqs. (3.20)

and (3.21)) and the detection filter equations (Eqs. (3.3), (3.4) and

(3.22)), the error dynamics of the filter are found to be

q(t) = (A - KC)q(t) + (b. - Kd.)n(t) (3.23)

r(t) = Cq(t) + d.n(t) (3.24)

These error dynamics are similar to the error dynamics produced by a

detection filter without input-output coupling in response to a failure

of a sensor whose output does not feedback into the system through a

controller. The unexpected control surface deflection appears both at

the input to the error differential equation and in the residual

equation. It may be possible to restrict the residual produced by

(b. - Kd.)n(t) term to a single direction C(b. - Kd ). But as this
--i --I 1 1

direction differs, in general, from the d. direction, which also appears
-i

in the residual equation, the failure signature will be planar. This

plane is spanned by the vectors C(b. - Kd.) and d.. Notice that the
-i -i -i

gain matrix K has an effect on the direction C(b. - Kd.) and therefore
-i -i

on the resultant plane. A unidirectional residual would result if the

direction of C(b. - Kd.) could be aligned with d.. However, aligning
--I --i --I
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C(b - Kd.) with d. would not allow the failure to be distinguishable in
--i --i --i

this application as there are only two distinct directions of the columns

of D (there are only two measurements which produce nonzero entries in

the D matrix). Therefore, without basic modification of the detection

filter, the effect of input-output coupling is to cause actuator failure

signatures to be planar instead of unidirectional.

This result prompted a re-examination of the use of the acceleration

measurements. However, it was decided not to substitute angle of attack

and sideslip angle measurements for the acceleration measurements as the

acceleration measurements are of higher quality. This decision limited

the remaining options to two: testing a detection filter with the planar

signature property or modifying the detection filter to regain the

property of unidirectional actuator failure signatures. Both of these

options were developed and tested. The results of the planar signature

detection filter are shown in Section 3.5. The modification of the

detection filter and the results obtained using this filter will be

presented in Section 4.

3.3 Detection Filter Design

A detection filter is designed by calculating the gain matrix so

that actuator failures produce unidirectional residuals in the case of no

direct input-output coupling or planar signatures when there is direct

input-output coupling. This desired residual behavior may be produced

for a fully measured system (i.e., rank [C] equals the number of states)

by choosing K such that, for some _,

A - KC = lI (3.25)

As the measurement set chosen for this evaluation is such that the system

is fully measured, this design approach will be used. The filter eigen-

values can be seen to be the eigenvalues of (A - KC) by rewriting Eq.

(3.3) •
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x' = (A - KC)x' + Bu' + K(y - Du') (3.26)

Thus the eigenvalue I should be chosen to give a stable filter that has
acceptable transient response characteristics.

3.3.1 Design Procedure

Using the previous approach, the following procedure can be used

to design a detection filter:

(I) Choose the measurement scaling.

(2) Select the filter eigenvalue I.

(3) Calculate the gain matrix.

(4) Set thresholds.

Each of these steps will now be discussed in more detail.

Measurement scaling was used to reduce the effect of noisy measure-

ments and enhance the contribution of higher quality measurements.

Scaling the measurements effectively changes the numerical values of the

standard deviation of the noise.

The next step is to choose the filter eigenvalue. One obvious

requirement is that the eigenvalue be chosen so the filter is stable. In

addition, it is desirable to make the filter fast, so as to reduce the

effect of modeling errors and to have short failure detection times.

However, a fast eigenvalue also reduces the magnitude of the residual

produced by a failure, making detection more difficult in a noisy envi-

ronment. If noise is a problem, though, it might be better to low-pass

filter the residual instead of making the filter slower. This supplemen-

tal noise filtering can be employed in such a way that the quick detec-

tion of a large failure is not sacrificed for the detection of smaller

failures. This is achieved by passing the residual through a bank of

parallel low-pass filters with different time constants. One such filter

would have a small time constant to allow f_r _!ick detection of large

failures while other filters would have larger time constants to allow
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for detection of moderate and small failures. The filter eigenvalue

chosen for this evaluation was approximately twice as fast as the fastest

eigenvalue of the system.

The final two steps are to calculate the gain matrix and to set

detection and isolation thresholds. The gain matrix calculation will be

discussed below. While selecting thresholds is an important aspect of

detection filter design, thresholds will not be selected in this study as

the algorithms will be evaluated qualitatively.

3.3.2 Gain Matrix Calculation

Given choices for scaling and the filter eigenvalue, actual calcu-

lation of the gain matrix to satisfy the equality shown in Eq. (3.25) is

still uncertain in this application because there are eleven measurements

and only ten states. K is underdetermined as there are ten more unknowns

than equations in satisfying Eq. (3.25). Recall that in order to be

guaranteed that Eq. (3.25) can be satisfied, the rank of C must be equal

to the number of states. 2 Therefore, one measurement could be elimina-

ted such that the rank of C remains ten. In this case, the gain matrix K

would becompletely determined by constraining A - KC to be the diagonal

matrix lI. However, eliminating a measurement just to simplify the gain

matrix calculation seemed undesirable since information is thereby lost,

and this approach was not taken. In addition, the ten degrees of freedom

remaining in the gain matrix after Eq. (3.25) has been satisfied might be

useful in separating the failure signature directions C(b. - Kd.) if
-I -I

their effect on these directions were known.

Two techniques for choosing K were explored: (1) the augmentation

of A - lI and C each with one column prior to solution by matrix inver-

sion, and (2) the minimum norm column solution of K. The first technique

was used in a rather ad hoc manner since there is at present no system-

atic approach to constraining the degrees of freedom. The purpose of

2 Note that the rank of C cannot be greater than the number of states.
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augmenting C with a column, _, is to make the matrix invertible. This

places the restriction on the column c that it be independent of the

columns of the matrix C. The matrix A - II must be augmented with a

column _ in order to have the multiplication by the inverted augmented C

matrix dimensionally correct. The solution for the gain matrix is then

K ; [A- iz] [c i (3.27)

A detection filter designed using this approach is evaluated in the

following sections.

A second technique for obtaining the filter gain matrix is to use

the pseudo inverse or generalized inverse (Reference 13) of C, C %, to

calculate the gain matrix K whose columns are the minimum norm solutions

of the equality Eq. (3.25). Here, K can be calculated

K = (A - lI)C t (3.28)

Note that this technique avoids explicit assignment of the twenty

parameters in the augmentation approach. But imposing this minimum norm

constraint on the ten fundamental degrees of freedom ultimately also

lacks theoretical justification. A detection filter design using this

approach will also be examined in the following section.

3.4 Test for Planar Failures

As described in Section 3.2, the plane in which the signature for

a failure of the ith control surface lies for the detection filter is

determined by the vectors C(b. - Kd.) and d.. A possible failure detec-
--i --I --i

tion and isolation test is to calculate the orthogonal projection onto a

particular failure plane. Then, the control surface associated with that

failure plane would be identified as failed if the magnitude of the

projection is greater than some threshold. If, however, one is willing
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to makea slightly restrictive assumption about the form of the surface

failure, it is possible to restrict the failure signature for a given

control surface to two segmentsof the plane. The assumption is that the

unexpected control input, n(t), be either always positive or always nega-

tive. The advantage of restricting the failure signatures to two plane

segments is the failures should be more distinguishable; the disadvantage

is that failures where n(t) is changing sign frequently maybe difficult

to detect. The initial evaluation of the detection filter only
considered constant bias failures, For this subset of failures, n(t) was

either positive or negative. Therefore, the planar test discussed below

assumesthat the failure signature for a given control surface is
restricted to either of two plane segments.

Before discussing this test, however, the two plane segments must

be defined, These failure signature plane segments can be determined by

examining Eqs. (3.23) and (3.24)o These equations for the state

estimation error and the observation residual are repeated here for

convenience.

q(t) = (A - KC)q(t) + (b. - Kd.)n(t) (3.23)

r(t) = Cq(t) + d.n(t) (3,24)

Consider first the case where n(t) is positive. As described in Section

3.2, the (b. - Kd.)n(t) term in Eq. (3.23) would produce a unidirec-
-i -i

tional residual along C(b. - Kd.), except for the presence of the addi-
-I -i

tive d.n(t) term in the residual equation. Therefore, the failure signa-
-I

tures for n(t) positive will lie in the segment of the plane defined by

the vectors C(b. - Kd.) and d. (See Figure 3.2). For n(t) negative, the
-i -i --i

residual directions produced by the failure will be the negative of the

vectors C(b. - Kd.) and d.. Therefore, the failure signatures for n(t)
--i --I --I

negative will lie in the segment of the plane defined by the negative of

the vectors C(b. - Kd.) and d..
-i -i -I
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/n(t) <0

>0

d i

-C(b i - Kdi)

Figure 3.2. Signature regions corresponding to the failure

of the ith control surface
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The test to detect and isolate planar failures in this evaluation

is the projection of the residual onto the two plane segments defined in

Figure 3.3. This test is similar to the test described for sensor

failures in Section 4.3.2 of Reference 8. The residual projection, in

the case when the orthogonal projection of the residual onto a particular

failure signature plane lies in either of the two plane segments, is

simply the orthogonal projection onto the plane or the negative of the

orthogonal projection. If the orthogonal projection lies outside these

two plane segments, the residual projection is the projection of the

residual or the negative of the projection onto the closest of the

normalized C(b. - Kdi) , _i' -C(b. - Kd ), or -d-I - -l -i -i"

3.5 Detection Filter Results

To design and test the detection filter, a single cruise flight

condition at an altitude of 304.8 m (1000 ft) and an airspeed of 77.2

m/s (150 knots) was chosen. First, the specific choices made in

designing the detection filter will be discussed, and then the simulation

results produced by this filter will be presented.

As described previously in Section 3.3, the design of a detection

filter was broken into three steps:

(I) measurement scaling selection

(2) eigenvalue selection

(3) gain matrix calculation

The measurements were scaled to have the units shown in Table 3.1,

reducing the reliance of the detection filter on the airspeed and normal

acceleration measurements in detecting and isolating failures and accen-

tuating the contribution of the angular velocity and attitude measure-

ments. The normal acceleration measurement was seriously affected by the

turbulence while the angular velocity and attitude measurements were of

better quality than the other measurements. In addition, the airspeed

measurement was very noisy.
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Table 3.1. Measurement Units for Unmodified

Detection Filter Evaluation

MEASUREMENT

Airspeed

Lateral Acceleration

Normal Acceleration

Angular Velocity

Attitude

Altitude Rate

Altitude

UNITS

7.6 m/s

0,3 m/s 2

I .5 m/s

•01 75 rad/sec

°01 75 rad

0.3 m/s

0.3 m

25 ft/sec

ft/sec 2

5 ft/sec 2

deg/sec

degrees

ft/sec

ft

27 1
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The detection filter eigenvalue was chosen to be approximately

twice as fast as the fastest eigenvalue of the system. Specifically, the

discrete-time eigenvalue chosen was 0.95. For the sample time of 20 ms

used in the simulation, .95 corresponds approximately to an eigenvalue of

-2.6 (a time constant of .4 s) in continuous-time domain.

Finally, the gain matrix may be calculated by either the augmenta-

tion of the C matrix or by using the pseudo-inverse of C. The detection

filter for which simulation results are presented was designed using the

augmentation approach. The ten degrees of freedom associated with the

underdetermination of the gain matrix were removed by eliminating the

effect of one measurement on the filter. In order to determine which

measurement to eliminate, detection filters were designed with each

eliminating the effect of a different measurement. The normal accelera-

tion measurement was chosen for suppression because this maximized the

signature plane separation. The normal acceleration measurement was

still used in the calculation of the residual and therefore in detecting

and isolating failures. However, the effect of the measurement on the

filter was eliminated by forcing the corresponding column of the gain

matrix to be zero.

This design produced elevator and rudder failure signature planes

that were orthogonal to each other and to all of the other failure

planes. However, the separation between the failure planes corresponding

to the ailerons and the flaps were much smaller. For the purpose of

defining a measure of separation between these planes, the eleven-

dimensional residual space may be reduced to a three-dimensional space,

since all but three components of the vectors which define these planes

are approximately zero. These three components are the normal accelera-

tion, body axis roll rate, and altitude rate components, and thus these

measurements will be most sensitive to these control surface failures.

In a three-dimensional space, the angle between signature planes is a

possible measure of separation and is the measure used here. The
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separation between the failure planes for the two ailerons was about

0.349 tad (20°); the separation between failure planes corresponding to

the aileron and the flap on the same wing was about 0.5235 rad (30°).

Given these results, it might be anticipated that this detection filter

should be able to detect and isolate elevator and rudder failures and be

able to detect but not isolate wing surface failures.

The pseudo-inverse approach to calculating the detection filter

gain matrix was also investigated. While the pseudo-inverse approach

produced directions of the columns of C(B - KD) and D that were more

separated than the augmentation approach, the failure signature planes

were less distinct. Using the scaling presented in Table 3.1, the

pseudo-inverse design resulted in identical failure planes for the two

ailerons and about 0.349 rad (20 ° ) separation between the failure planes

corresponding to the aileron and the flap on the same wing. The failure

plane segments for the two ailerons, while not overlapping as with other

scalings tried with the pseudo-inverse approach, are adjacent to each

other as shown in Figure 3.4, making isolation difficult.

As the detection filter designed using the augmentation approach

produced slightly better plane separation, this filter was chosen for

testing. The test cases for which results are presented in this section

are described in Table 3.2. The results presented are in terms of the

residual projected onto the two plane segments for each surface which was

defined earlier in this section. These results are shown in Figures 3.5

through 3.13. In addition, the residual projection values were averaged

from the time of failure until the end of the 40 s simulation run to

approximately determine the size of the bias in the residual projection

caused by the failure. These results are shown in Table 3.3. The

residuals were low-pass filtered with a time constant of 1.0 s to reduce

the effects of noise and turbulence.

Conclusions were made regarding the ability of the detection

filter to detect and isolate failures using results from the nine test

cases presented. FDI performance was assessed by comparing the magnitude
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of the residual projections onto the planar segments as a result of the

failures relative to the projections where a failure was not present.

The following major conclusions were drawn.

(I) The detection filter was able to detect and isolate at least

moderate elevator and rudder failures in the presence of

noise and minor turbulence (0.3 m/s or I ft/s). A 0.0349 rad

(2 ° ) elevator bias failure test case is shown in Figure 3.7,

while the 0.0349 rad (2 °) rudder bias failure case is shown

in Figure 3.9.

(2) The filter was able to detect but not isolate moderate wing

surface (aileron and flap) failures in the presence of dis

turbances. In the case of the right aileron failure shown

in Figure 3.10, the detection filter correctly indicated that

this surface had failed. However, the filter also indicated

incorrectly that the failure might have occurred in the right

flap or left aileron. A failure of the rudder has been elim-

inated as a possibility since it causes only a slight change

in the aileron and flap residual projections (Figure 3.9).

In the case of the right flap failure shown in

Figure 3.11, the filter correctly detected a right flap

failure but it also suggested that a right aileron failure

was possible.

This difficulty in isolating wing surface failures is more a

property of the system and the measurements chosen than the

detection filter itself. The effect of the flaps and the

ailerons were largely evident in the body axis roll rate and

less evident in the normal acceleration, body axis yaw rate,

and altitude rate measurements. However, the effects of the

flaps and ailerons on the latter three measurements were not

significant enough to be able to distinguish one aileron from

the other or an aileron and a flap on the same wing.

(3) Based on the time of response for the decision function to

reach a new steady state condition after a failure, the time

to detect elevator and wing surface failures would be
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(4)

(5)

approximately two seconds. The time required to detect a

moderate rudder failure would be approximately five seconds.

Detection times, in general, depend on the magnitude of the

failure, the thresholds selected, the eigenvalue of the

detection filter, and the time constant of the low-pass

filter used to suppress noise in the residual.

Turbulence significantly degrades the performance of the

detection filter. By comparing the no-failure cases shown in

Figures 3.5 and 3.6, severe turbulence (I.98 m/s or 6.5 ft/s)

can be seen to increase the likelihood of false alarms. In

addition, severe turbulence significantly degrades the

ability of the detection filter to even detect a moderate

elevator failure. This can be seen by comparing Figures 3.7

and 3.8.

Modeling errors also degrade detection filter performance.

In order to test this detection filter - which was designed

for a cruise flight condition at an altitude of 304.8 m

(I,000 ft) and an airspeed of 77.2 m/s (150 knots) - with

regard to modeling errors, test cases were generated for the

aircraft in a cruise flight condition at an altitude of

1524.0 m (5,000 ft) and an airspeed of 102.9 m/s (200

knots). The no-failure case shown in Figure 3.12 reveals a

bias in most of the decision functions. The major reason for

this bias is a nonzero body axis roll rate residual caused by

modeling errors. This bias is likely to increase the false

alarm rate and to degrade the filter's ability to detect wing

surface failures. The right aileron bias failure test case

at the off-nominal cruise condition is shown in Figure 3.13.

One method of reducing the sensitivity of the detection

filter to modeling errors might be to estimate the bias

caused by mismodeling and appropriately compensate the

residual.
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3.6 Conclusions

The following general conclusions have been drawn from this phase

of the study.

(I) The detection filter can be used to detect control surface

failures.

(2) The detection filter can isolate failures of surfaces that

produce independent effects on the aircraft but may not be

able to isolate failures among surfaces that produce similar

effects on the aircraft. The detection filter was unable to

isolate wing surface (aileron and flap) failures. The main

reason for this result is that these surfaces have similar

effects on the aircraft dynamics. Isolation of failures will

be difficult whenever there are functionally redundant

control surfaces. If isolation of control surface failures

is required for restructuring of the control system,

additional software or hardware will be required.

(3) The magnitude of the failures that can be detected depends on

the sensor noise, disturbances, and modeling errors. The

detection filter was especially sensitive to turbulence and

modeling errors. Moderate (-0.0349 rad (-2 °) elevator,

aileron, rudder and 10% flap) failures could be detected in

minor turbulence. However, detecting moderate failures in

severe turbulence was much more difficult. While hardover

failures were not tested, they should be easily detected even

in severe turbulence. Modeling errors also degraded the

ability of the detection filter to detect moderate failures.

Detection of hard failure, though, should still be possible.

(5) The failure detection and isolation times for the detection

filter depend on the magnitude of the failure, the

thresholds selected, the eigenvalue chosen for the _tion

filter, and the time constant of the low-pass filter, if any,
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(6)

(7)

required to suppress noise in the residual. Approximately

two seconds would be required to detect a moderate failure

with the residual being low-pass filtered with a time

constant of one second. Approximately five seconds would be

required for a moderate rudder failure. Larger magnitude

failures could be detected faster as much less, if any,

filtering would be necessary. On the other hand, the

detection and isolation of small magnitude failures would

require heavy low-pass filtering for noise suppression which

would impact the failure detection time because of the

relatively long time required to reach steady state.

Detection filter theory is mature for restructurable controls

application to linear, time-invariant systems with no input-

to-output coupling. This is not the case for systems with

input-to-output coupling for which actuator or control

surface failure signatures become planar instead of uni-

directional. Another effect of coupling is that scaling

now impacts detection filter performance and there is no

systematic method available to use it to improve perform-

ance. In addition, no systematic method is available to use

the degrees of freedom which exist by having more measure-

ments than states. Finally, there is no theory for applying

the detection filter to time-varying systems.

There is limited experience in applying the detection filter

to systems. References 8 and 12 describe two of these appli-

cations.

45

i



46



v

SECTION 4

A MODIFICATION TO THE DETECTION FILTER FOR

SYSTEMS WITH DIRECT INPUT-TO-OUTPUT COUPLING

4.1 Introduction

This section presents and evaluates a modification to the basic

detection filter. The basis and need for the consideration of the

modified detection filter arises from a limitation of the basic detection

filter when it is applied to the aircraft restructurable control systems

problem. Basic detection filter theory has been developed for systems

for which no direct input-output (control surface deflection to

measurement) coupling exists. In this case, the detection filter is

designed so that an actuator or a control surface failure produces a

unidirectional filter residual. This residual direction depends only on

the component (actuator or control surface) that has failed and is

independent of the mode of the failure (e.g., bias, ramp, etc.).

Therefore, failures are detected and isolated simply by observing the

magnitude and the direction of the residual.

However, direct input-output coupling arises with regard to the

restructurable controls problem because of acceleration measurements

present on aircraft. As acceleration measurements are common onboard

measurements and are, in general, of higher quality than angle of attack

and sideslip angle measurements, detection filter design with direct

input-to-output coupling was investigated instead of eliminating these

measurements. The previous section on the detection filter showed that,

with direct input-to-output coupling, the residual produced by an
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actuator or control surface failure could be, at best, constrained to a

plane using current detection filter design theory. Detection and isola-

tion of failures with planer signatures is possible but more difficult.

This section presents and evaluates a modification to the detec-

tion filter to restore the unidirectional residual property produced by

actuator or control surface failures when there is direct input-to-output

coupling. The approach employed is to use secondary filtering of the

detection filter residuals to produce unidirectional failure signatures.

As before, the evaluation was conducted using the C-130 aircraft simula-

tion. Failures were introduced into the simulation to assess the failure

detection and identification capability of this modification.

The modification is presented in Section 4.2. The results are

presented in Section 4.3, and Section 4.4 contains the conclusions of

this evaluation of the modification of the detection filter.

4.2 Modification of the Detection Filter

The effect of direct input-output coupling on actuator failure

signatures for the detection filter, discussed in Section 3.2, forms the

basis for the material in this section. Recall that without basic modi-

fication of the detection filter, the effect of input-output coupling is

to cause actuator failure signature to be planar instead of unidirection-

al. In the course of applying the detection filter to the restructurable

control problem, it was discovered that secondary filtering of the detec-

tion filter residual could lead to unidirectional failure signatures even

when there is direct coupling between inputs and measurements. Consider

the discrete-time transfer function between the unexpected input from the

ith actuator and the residual obtained by taking the z-transform of Eqs.

(3.23) and (3.24).

_(_) = r_1.T _ _ = v_-lt_ vA ) + d 1.t.)
J J-l% _

-- --i -I --i
(4.1)

Assuming that the detection filter gain matrix, K, is calculated to

satisfy the relationship
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A - KC = lI (4.2)

where I is the selected detection filter eigenvalue, it follows that

C(b. - Kd.)
-i -i

r(z) = [ z X + d. ] n(z) (4.3)

If the contribution d.n(z) could be filtered with the same time constant
-i

as in the detection filter, the failure signature would be unidirec-

tional, lying along C(b. - Kd.) + d.•
-I -I -i

The secondary filtering scheme, then, has several elements.

First, the components of the residual along the event vectors d. are
-i

separated from the residual. Then they are filtered using the detection

filter time constant. Finally, these filtered components are then added

to the other components, forming a new residual. It is this new residual

that is used for failure detection and isolation.

In order for the initial separation of the components along d. to
-I

be possible, all event vectors d. must be mutually independent, and each
-l

must be independent of the hyperplane formed by the C(b. - Kd.) vectors•
-i -i

To obtain the components of the residual in the directions d., first
-i

write the residual

r(k) !""

Pc(k)

m m

c1(k)

c2(k)

Cs(k)

(4.4)

(4•5)

Here, C(b. - Kd.) has been normalized for each of the six actuators of
-i -I
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the present application, giving C(b._l- Kd')N'-i and -IN_ and _2N~ are the

distinct directions among the columns of the D matrix (two in this appli-

cation)• The vector _(k) is obtained using

c(k) = P%r (k) (4.6)

where Pt is the pseudoinverse (generalized inverse) [Reference 13] of

P.

~ The magnitudes c7(k) and c8(k) of the components of r(k) along _IN

and _2N are passed through a secondary two-state filter:

_q'(k) = II_q'(k-1) + I c7(k-I)I (4.7)

c8 (k-1

Substituting these filtered components for the unfiltered ones in c(k)

leads to

_f(k) c I (k)

c6 (k)

I

q1( k )

q_(k)
m

(4.8)

Transforming this vector of components back into the original residual

space results in

rf (k) = Pcf (k) (4.9)
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Actuator failures may be detected and (simultaneously) isolated through

projection of rf(k) onto each of the six signature vectors C(b -Kd )+ d .
- -i -l -i

In using the transformation p it has been assumed that r(k) lies

in the eight-dimensional space spanned by columns of P. Applying trans-

formations P' and P leads to suppression of noise in the residual that

is in directions orthogonal to the range of P. Because noise in these

directions only interferes with failure detection and isolation, this

suppression could be very beneficial.

The modified detection filter is shown in Figure 4.1. The

operators S and R, where

I_ 0 0 0 0 0 I 0 1
S = 1.__ (4.10)

0 0 0 0 0 0

and

T T

R = I8x 8 - e7e 7 - e8e 8 (4.11)

denote, respectively, the operations of forming the two-vector [c 7 c8]T

and of nulling out c7 and c 8 in _.

4.3 Modified Detection Filter Design

A number of modified detection filter designs were tested via

simulation to evaluate the concept. As with the unmodified detection

filter, all the designs assumed a nominal cruise condition of 77.2 m/sec

(150 knots) at an altitude of 304.8 m (1000 ft). The modified detection

filters were designed using the same approach as for the unmodified

detection filter because the modification consists simply of augmenting

the detection filter with secondary filtering of the residual. As the

secondary filtering is determined entirely by the linear model of the
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system, the gain matrix, and the detection filter eigenvalue, no design

of the secondary filtering is required. Detection filter design, as

presented in Section 3.3, consists of three steps:

(I) measurement scaling selection

(2) eigenvalue selection

(3) gain matrix calculation.

The selections which produced the best design are now described.

The measurements were scaled to have the units Shown in Table

4.1. Note that these units differ from those selected for the unmodi-

fied detection filter in Table 3.1. The measurement units chosen reduce

the dominance of the acceleration measurements, which are highly affected

by turbulence, in detecting and isolating failures while increasing the

contribution of the higher quality angular velocity and attitude measure-

ments. Also, the airspeed residual was scaled to reduce the effect of

the noisy airspeed sensor on the filter.

Scaling the lateral acceleration measurement also reduced some

numerical errors produced by the secondary filtering. The idea of secon-

dary filtering is to filter the portion of the residual produced by

direct input-to-output coupling with the same time constant as the detec-

tion filter. Separating this portion of the residual from the total

residual is not numerically exact. Therefore, a portion of the residual

no___tassociated with direct input-to-output coupling will be also fil-

tered, producing small yet significant errors. (In addition, errors

occur when some of the direct input-to-output contribution to the resid-

ual is not passed through the secondary filter. However, these errors

are too small to have a significant effect.)

The eigenvalue chosen was the same one chosen for the unmodified

detection filter. In discrete-time the eigenvalue chosen was 0.95. For

the sample time of 20 ms used in the simulation, the equivalent

continuous-time eigenvalue is -2.6.
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Table 4.1
MeasurementUnits for Modified Detection Filter Evaluation

MEASUREMENT

Airspeed

Lateral Acceleration

Normal Acceleration

Angular Velocity

Attitude

Altitude Rate

Altitude

UNITS

7.6 m/s

0,6 m/s 2

I .5 m/s

.0056 rad/s

.0175 rad

0.3 m/s

0.3 m

25 ft/s

2 ft/s 2

5 ft/s 2

• 318 deg/s

deg

ft/s

ft
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The gain matrix was also calculated using the same method used in

producing the best design for the unmodified detection filter: the

augmentation of the C matrix approach. As before, the effect of the

normal acceleration measurement on the filter was suppressed by forcing

the corresponding column of the gain matrix to be zero. The normal

acceleration measurement was still used in the calculation of the resid-

ual and therefore in detecting and isolating failures.

4.4 Modified Detection Filter Results

The test cases used to evaluate the modified detection filter are

described in Table 4.2. These cases included the no-failure simulation

(Figure 4.2) and simulations of failures of elevator, right aileron, left

aileron, right flap, and rudder (Figures 4.3 through 4.7) in the presence

of low-level turbulence. To determine the effects of higher turbulence

intensity, data for the no-failure case and the -0.0349 rad (2 ° ) elevator

bias failure case with a turbulence level of 0.3 m/s (6.5 ft/s) rather

than the nominal 0.3 m/s (I ft/s) were also processed. These results are

shown in Figures 4.8 and 4.9, respectively. The cases described above

assumed the aircraft to be at the nominal cruise condition of 77.2 m/s

(150 knots) at an altitude of 304.8 m (1000 ft). The effect of modeling

errors was determined by processing data for the no-failure and right

aileron failure cases (Figures 4.10 and 4.11, respectively) at an

off-nominal cruise condition using the filter designed for the nominal

cruise flight condition. All failure onsets occurred at five seconds,

and sensor noise was also simulated. The residuals were not low-pass

filtered as they were for the unmodified detection filter, however.

Figure 4.2 shows the projection of the residual vector _f onto

each of the unitized failure signature directions for the no-failure

case. Only the system noise and the unmodeled dynamics influence the

residual after the filter transients die away. Turbulence affects the

modified detection filter residual projections more than those of the
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unmodified filter because the modified filter relies more on the normal

acceleration measurement to detect elevator, aileron, and flap failures.

This is true despite the attempt to diminish the use of the normal

acceleration measurement and rely more on the roll rate measurement

through scaling of the measurements.

The residual projections become biased relative to the no-failure

residual projections about a second after the failure. The bias appears

to be approximately constant, which is a reflection of the unidirection-

ality of the failure signatures. In order to determine the size of the

bias, the residual projection values were averaged from the time of

failure until the end of 40 s simulation run. The results for the test

cases are shown in Table 4.3. With suitable thresholds for decision, it

is reasonable to expect that, for the case where the filter has a good

model, residual projection magnitude could be used to detect any of these

control surface failures at low turbulence levels. By comparing the mean

residual projections onto the expected failure directions, elevator and

rudder failures are clearly identified. Not unexpectedly, however,

isolating specific wing surface failures was more difficult. For both

aileron failure cases, the modified detection filter was able to isolate

the failure to the aileron or flap on the correct wing. This conclusion

was based on the mean residual projections for the aileron and flap on

the correct wing being larger than the other mean residual projections.

Based on the one flap failure case, isolating the failure to one of the

flaps might be possible. While unable to clearly isolate wing surface

failures, the modified detection filter was better able to distinguish

between the wing surfaces than the unmodified detection filter.

High-level turbulence significantly affects the filter residual

and therefore the residual projections. If thresholds were set to detect

failures with low-level turbulence, the high-level turbulence would

probably cause a failure to be indicated even in the no-failure case.

Yet, when compared to the high-turbulence no-failure case, the elevator

failure in high turbulence still has a detectable signature, although

a flap failure is also falsely indicational.
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When the filter model was less representative of the actual dynam-

ics, the effect of the mismodeling was to introduce a large bias in the

filter residual. This led to large residual projections, an indication

of failure - even in the no-failure case. But the residual was notice-

ably larger in the aileron failure case (the only failure tested at the

off-nominal cruise condition), and the projections were offset from those

of the no-failure case by approximately the same amounts as for the

corresponding cases tested at the nominal cruise condition.

In order to reduce the sensitivity of the modified detection

filter to both turbulence and modeling errors, dynamic thresholds or a

method of estimating the residual biases caused by disturbances and

modeling errors would be of benefit. If estimating these biases were

possible, the residual could be appropriately compensated and failures

could still be detected and isolated.

4.5 Conclusions

The modified detection filter has been presented and it has been

evaluated with regard to its ability to detect and isolate aircraft

control surface failures. The following conclusions and advantages and

disadvantages of the modification to the detection filter are based on

the results described in the last section. Comparisons with the

unmodified detection filter are also presented where appropriate.

(I) The modified detection filter can be used to give unidirec-

tional failure signatures in applications where there is

direct coupling of inputs to measurements. The modifications

required are minor. Unlike the unmodified detection filter

for this application, there are straightforward detection and

isolation tests based directly on mean residual projection

magnitude and direction.

(2) Noise orthogonal to the C(b. - Kd.) and d. directions is
-I -I -i

suppressed as a by-product of the secondary filtering.
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(3) Small but significant residual errors can be caused by the

secondary filtering because separating the portion of the

residual produced by direct input-output coupling is not
numerically exact.

(4) The modified detection filter can be used to detect control

surface failures in low level turbulence with no modeling
errors.

(5) The modified detection filter will have difficulty in isolat-

ing failures that produce similar effects on the aircraft.
Both the unmodified and modified detection filters were not

able to isolate wing surface (aileron and flap) failures to a

specific wing surface. However, the modified detection

filter shows more promise of being able to distinguish

between these surfaces which produce similar effects.

(6) The modified detection filter is sensitive to disturbances

such as turbulence and to modeling errors. Dynamic

thresholds or somemethodof estimating the no-failure

residual magnitudes could be of benefit in achieving adequate

levels of FDI performance. If this is possible, detecting

failures with turbulence and modeling errors would still be
achieved.

(7) Based upon the time for the projection of the residual onto

the failure signature directions to significantly show the
effects of a failure, the failure detection and isolation

times for the modified detection filter in low turbulence

were on the order of a second, approximately the sameas

those obtained for the unmodified filter.

(8) As the modification is a new concept, it is not mature in

either theory or application.

70 I



(9) Given our experience with both the unmodified and the

modified detection filter, it is our judgment that the

modified detection filter holds more promise for applications

with direct input-to-output coupling and therefore deserves

continued investigation.
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SECTION 5

LIKELIHOOD RATIO TESTS

5.1 Introduction

Likelihood Ratio Tests are evaluated in this section with regard

to their ability to detect and isolate control system failures. Two

tests are evaluated: the Generalized Likelihood Ratio Test and the

Orthogonal Series Generalized Likelihood Ratio Test. An analytical

development of each algorithm is presented. Simulation results, which

directly compare the FDI capability of both algorithms, are shown and

discussed. Most of the material contained in this section is taken from

Reference 10.

5.2 The GLR Test for Dynamic Systems

The details of the GLR test may be found in Reference 9. A

discrete-time system is assumed for the present discussion. In the

normal mode of operation (H0) , the state dynamics and measurement

equation are given by

_(k+1) = _(k)_(k) + B(k)_(k) + _(k) + _(k)

z(k) = C(k)x(k) + D(k)u(k) + v(k) + h(k)

_(k) and _(k) are bias vectors. _(k) and _(k) are independent,

zero-mean, white Gaussian sequences with covariances given by

(5.1)

(5.2)
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E[w__(k)wT(j)]_= Q(k) %j (5.3)

E [v(k)vJ (j) ] = R(k) %j (5.4)

The GLR failure hypothesis is that

x(k+1) = _(k)x(k) + B(k)u(k) + w(k) + g(k) + b(k)n(k,8)v (5.5)

_(k) = C(k)_(k) + D(k)_(k) + z(k) + _(k) + _(k)n(k,8)v (5.6)

where _(k) and _(k) are known vectors that depend on the type of the

failure. For example, if an actuator failure is modeled, b(k) will be

the column of the matrix B(k) corresponding to that actuator, and d(k)

will be the corresponding column of D(k). If a sensor failure is model-

ed, b(k) will be the zero vector, and _(k) will be given by

d. (k) = 6.., i = I, 2, ..o, m
1 13

(5.7)

where j is the index corresponding to the failed sensor, n(k, 8) is the

mode shape, or simply mode, of the failure, which occurs at time 8.

Generally, we have that

n(k,8) = 0, k < 8 (5.8)

For example, if a bias failure is assumed, then

0 k< e

n(k, 8) = (5.9)

I k > 8

Finally, _ is the magnitude of the failure.
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For the analysis that follows, the deterministic input and bias
terms in the state and measurementequations that are commonto both

hypotheses maybe eliminated, due to the linearity of the equations.

Therefore, the no-failure hypothesis (H0) and the failure hypothesis

(HI ) are represented by

H0: x(k+1) = #(k)x(k) + w(k) (5.10)

y(k) = C(k)x(k) + v(k) (5.11)

HI: _(k+1) = #(k)_(k) + _(k) + _(k)n(k,@)u (5.12)

y(k) = C(k)x(k) + v(k) + d(k)n(k,8)u (5.13)

Suppose the data_(k) are observed over the observation interval

k 0 < k < kf (5.14)

For a given time of failure, e, and magnitude of failure, v, the

Likelihood Ratio (LR) is given by

p(y(k 0), Y(k0+1), ..., y(kf)IH1 ,8,_)

A(kf,8, u) = p(y(k0) ' _Y(k0+1) ' .-., y(kf)IH0) (5.15)

Because the _(k) are not independent from time step to time step, the

evaluation of the conditional probabilities is difficult. To evaluate

the LR, a Kalman filter is implemented, based on the normal mode (H 0)

system. The filter equations are

x- (k+1) = #(k)x+(k) (5.16)
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^

x+(k) = x-(k) + K(k)y(k) (5.17)

where K(k) is the Kalman gain matrix, and l(k) is the residual, given by

!(k) = z(k) - C(k)_(k) (5.18)

The Kalman gain matrix is given by

K(k) = P-(k)cT(k)M -1(k) (5.19)

where P-(k) is the covariance of the estimation error

e-(k) = x(k) - x-(k) (5.20)

and M(k) is the covariance of l(k), given by

M(k) = C(k)P-(k)cT(k) + R(k) (5.21)

The covariance is propagated by

P-(k+1) = #(k)P+(k)#T(k) + Q(k) (5.22)

P+(k) = [I - K(k)C(k)]P-(k) (5.23)

The LR may then be written in terms of the residual sequence _(k) rather

than the measurement sequence. Because the residual sequence is (condi-

tionally) a white Gaussian sequence, the LR is easier to determine in

terms of l(k) than in terms of _(k).

Due to the linearity of the state equation and the filter e_aa-

tions, the residual may be expressed under each hypothesis as
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H0: x(k) = Y0(k) (5.24)

HI: x(k) = Y0(k) + _(k,e)_ (5.25)

where _o(k) is a zero-mean, white Gaussian sequence with covariance

M(k). g(k, 8) is the failure signature of a failure occurring at time 8.

g(k, 8) is given by

g(k,e) -- C(k)f(k,e) + d(k)n(k,e) (5.26)

where f(k, 8) is the influence of the failure mode n(k, @) on the state

estimation error. _(k, 8) may be generated recursively by

f(k+l,@) = #(k)[I - K(k)C(k)]f(k, 8) + [b(k) - _(k)K(k)d(k)]n(k, e)

(5.27)

with the initial condition

_(k0, e) = O (5.28)

It can be seen therefore that

_(k,e) = _, k < @ (5.29)

The LR is given by

p(l(k 0), l(k0+1), ..., l(kf)IH1,8,9)

A(kf,8, v) = p(__Y(k0), _Y(k0+1) ' ..., y(kf)IH0 ) (5.30)

Because the residual sequence is (conditionally) Gaussian and white, the

Log Likelihood Ratio (LLR) ratio has a particularly simple form:
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where

£(kf, 8, 9) I u2S(kf,= _ x(kf, 8) - _ 8)

x(kf, e) = _f g_T(k, e)M-I (k)_y(k)

k=8

(5.31)

(5.32)

S(kf,@) = _f g__T(k,@)M -1(k)_(k)

k=8

(5.33)

Now, the generalized likelihood ratio is given by

£(kf) = max £(kf, 8, _)

Performing the maximization over _ first, we have that

(5.34)

^ x(kf, 8)

_(kf, 8) =
S(kf, 8)

Hence, the GLR test statistic is given by

X2 (kf 8)I

£(kf ) = max 2

s(kf, )

(5.35)

(5.36)

As a matter of convenience, the GLR decision function is defined by

X2 (kf, @)

DF(kf) = 2 £(kf) = max (5.37)

sCkf,8)

A failure is detected when the decision function exceeds the detection

threshold.
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A closed-form solution to the above maximization does not exist

in general. Therefore, in order to implement the GLR, the statistic

£(kf,8) must be computed for all possible times of failure, 8. As a

result, a bank of matched filters that grows linearly with time is

required. To avoid this unlimited growth in the amount of computation,

the assumed time of failure may be restricted, say, to be in the range

kf - N < 8 _ kf. Even so, the amount of computation required to

implement the GLR can be quite large, especially if N is large.

5.3 The Orthogonal Series GLR Test

The Generalized Likelihood Ratio methods of FDI tend to be

computationally burdensome. This complexity arises from the need to

estimate the random onset time of the failure, which generally requires

a nonlinear estimation structure. In addition, these methods may not be

robust to failure mode uncertainty.

An FDI algorithm that is robust to failure mode uncertainty is

the detection filter. Unfortunately, the applicability of the detection

filter is limited by a number of factors. One restriction is that the

theory is limited to linear time-invariant systems. Also, the detection

filter design process breaks down for systems where two or more failure

types are not "output separable," even though it should be possible to

detect and isolate failures for some such systems. Finally, little

guidance exists on how to choose the free parameters in the design

process, such as the filter eigenvalues.

In this section, an algorithm that addresses these problems, the

Orthogonal Series Generalized Likelihood Ratio (OSGLR) Test, is

proposed. As suggested by its name, the OSGLR test is indeed a GLR

test. The hypothesis upon which the test is based is that the failure

modes can be represented as truncated orthogonal series of time

functions. Because such a series can represent a broad class of failure

modes, the test should be robust to failure mode uncertainty. The test

79



is not as computationally complex as other GLR methods, because the time

of failure does not enter the failure hypothesis explicitly. The only

unknowns in the failure hypothesis are the coefficients of the terms in

the orthogonal series. Because they enter the state and measurement

equations linearly, these unknowns can be estimated by relatively simple

linear schemes. In practice, the discrete-time case is likely to be

more useful, because it is more amenable to computer implementation.

However, continuous-time systems will be dealt with here because the

mathematics are less cumbersome.

5.3.1 OSGLR Hypotheses

We are interested in detecting failures in linear dynamic systems,

which under normal conditions are modeled by

dx(t) = A(t)x(t) + B(t)u(t) + w(t) (5.38)

dt

y(t) = C(t)_xx(t) + D(t)u(t) + z(t) (5.39)

w(t) and v(t) are independent, zero-mean, Gaussian processes with

autocorrelation functions given by

E[w__(tI )wT(t2)]_ = Q(t I ) _(tl-t 2) (5.40)

E[Z(t I )vT(t2)]_ = R(t I) _(t 1-t 2) (5.41)

When a failure occurs, either the state dynamics change or the

measurement equation changes. For example, if the ith actuator fails,

the actual input vector, _Ua(t), differs from the commanded input, _(t),

as follows:

u (t) = u(t) + e f(t)
--a -- --qi (5.42)
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where _qi is a q-dimensional unit vector in the ith coordinate direc-

tion, i.e., the elements of _qi are given by

(e . ). = 6.., j = I, 2, ..., q (5.43)
--ql 3 "3

where _ij is the Kronecker delta, f(t) is the mode shape of the fail-

ure. For example, if the failure is a bias shift, then f(t) is a step

function of some magnitude at the time of the failure. Thus, the state

dynamics and measurement equations become

d_(t) = A(t)_(t) + B(t)_(t) + bi(t)f(t) + _(t) (5.44)

dt

y(t) = C(t)x(t) + D(t)u(t) + d.(t)f(t) + v(t) (5.45)

where b_i(t) and d_i(t) are the ith columns of B(t) and D(t), respec-

tively.

Similarly, a failure in the ith sensor can generally be repre-

sented in the measurement equation as

y(t) = C(t)x(t) + D(t)u(t) + e .(t)f(t) + v(t) (5.46)

As in the case of an actuator failure, f(t) depends on the mode of the

failure. For example, if the output of the ith sensor is fixed at zero

(except for the additive noise), then

f(t) = - --icT(t)x(t)-- - _d_(t)u(t)_ (5.47)

where c_(t) is the ith row of C(t).
1

for changes in the plant dynamics.

this regard.

The situation is more complicated

Reference 10 should be consulted in
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For most types of failures (actuator failures, sensor failures,

and sometypes of dynamics changes), the effect of the failure can be

captured in the state and measurementequations as

dx(t)
at = A(t)_(t) + B(t)_(t) + _(t)f(t) + _(t) (5.48)

z(t) = C(t)_(t) + D(t)_(t) + _(t)f(t) + z(t) (5.49)

The vectors _(t) and _(t) are knownahead of time for each type of fail-

ure, whereas the modeof the failure, f(t), is generally unknowna

priori. In the analysis that follows, the terms due to the input u(t) in

the state and measurement equations can be neglected, due to the linear-

ity of the equations and the fact that B(t), D(t), and u(t) are known.

It is important to remember, however, that these terms must be included

in any implementation of the OSGLR algorithm. Specifically, these terms

must be included in the Kalman filter that estimates x(t). The

discussion will be confined to the binary hypothesis testing case. That

is, we will assume that we are only trying to detect a single failure

type, rather than detect and isolate from a set of failure types. Later,

the results will be extended to include the isolation problem.

The OSGLR test will be derived in the following manner. The

fixed-length data test for data observed over the interval

to ! t ! tf

will be found.

form a sequential test. The no-failure (H 0) and failure (H 1 )

hypotheses are given by

dx(t)

H0: dt = A(t)_(t) + _(t)

This fixed data test will then be suitably modified to

(5.5O)

z(t) = C(t)_(t) + z(t) (5.51)
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dx(t)
HI " dt - A(t)x(t) + w(t) + b(t)f(t) (5.52)

z(t) : C(t)_(t) + z(t) + _(t)f(t) (5.53)

For both hypotheses _(t0) is a Gaussian random variable with zero mean

and covariance P0"

Because the failure mode shape f(t) has not been specified, the

hypothesis H I is not complete. In order that the test be robust to

failure mode uncertainty, it would be desirable to allow f(t) to be

completely arbitrary. However, this assumption does not lead to a

well-posed problem. Therefore, some further assumptions must be made.

The approach that will be taken here is to represent the mode

shape f(t) by a truncated series expansion with unknown coefficients.

The motivation is that if the basis functions of the expansion are chosen

properly, it should be possible to approximately represent a rich class

of failure modes. Therefore, it is assumed that f(t) can be expressed as

P

f(t) = _ ali_li(t) (5.54)
i=I

where p is the number of basis functions, the all are unknown coeffi-

cients, and the _li(t) are the basis functions. Eq. (5-54) can be

expressed more conveniently in vector form as

f(t) = 9_(t)_1 (5.55)

The subscript "I" indicates that this is an intermediate representation.

Ultimately, we will be interested in a representation of the form
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f(t) = _T(tf- t)_(tf) (5.56)

It cannot be overemphasized that the representation of f(t) in Eq. (5.55)
is meant to be an approximation. There is no reason to believe that an

actual failure modewill have this particular form.

Twoimportant features of these hypotheses are that the failure

hypothesis does not include a parameter representing the time of failure,

and that the unknownparameters enter into the problem linearly. Hence,

nonlinear estimation will not be required. As will be seen, this signi-

ficantly reduces the amount of computation required relative to other GLR
methods.

5.3.2 Derivation of the OSGLR Algorithm

The OSGLR test is derived in several steps. First, the test is

derived based on the representation of f(t) given by Eq. (5.55). Next,

the test is converted to a form that corresponds to a second intermediate

representation of f(t). A special case of this representation is given

in Eq. (5.56). In the process, the test statistic is converted from an

integral representation to a differential equation representation. A

more complete derivation may be found in Reference 10.

To determine the form of the test, we proceed as follows. A Kal-

man filter based on the unfailed system statistics (H0) , is used to

generate the residual process !(t). The filter equations are

dx(t)

dt = A(t)_(t) + K(t)!(t) (5.57)

_(t o) = £ (5.58)

x(t) = z(t) - C(t)_(t) (5.59)
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K(t) = P(t)cT(t)R -1(t) (5.60)

dP(t)
dt -- A(t)P(t) + P(t)AT(t) + Q(t) - P(t)cT(t)R -1 (t)C(t)P(t)

(5.61)

P(t0) = P0 (5.62)

where x(t) is the estimate of x(t), P(t) is the covariance of the estima-

tion error, and K(t) is the Kalmangain matrix. The process !(t) con-

tains exactly the same information as _(t), because each can be deter-

mined unambiguously from the other. However, l(t) is easier to work with

than _(t) because it is a white noise process, whereas _(t) is correlated

in time.

By the linearity of the Kalman filter and the system equations,

the residual can be decomposed as

l(t) = y_0(t) + !i (t) (5.63)

where _0(t) is the residual process that results under H0, and _1(t) is

the part of the residual due to the failure. Again, due to the linearity

of the filter and the system, _l(t) can be expressed as

!1(t) = GI(t)AI (5.64)

where the matrix G1(t ) represents the influence of the vector of coef-

ficients _I on the residuals, and remains to be determined. Therefore,

we can rewrite the two hypotheses as

H0: _(t) = T--0(t) ' t O ! t ! tf (5.65)
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HI: X(t) : _0(t) + G 1(t)a I , t O _ t _ tf (5.66)

where _0(t) is a zero-mean, Gaussian process with the autocorrelation

function

= Rot1)a(tl-t2) (5.67)

Hence, the problem of deciding between H 0 and H I has been reduced to the

problem of deciding whether or not a bias signal is present in the white

residual process.

It can be shown that the information vector, defined by

tf

(tf) = f GT(t)R -I (t)__(t) dt (5.68)

to

is a sufficient statistic, i.e., that it contains all the information

contained in the residual process regarding the hypotheses. Hence, it

can be used in place of the entire time history of the residuals to

determine whether a failure has occurred. Now, Xl(tf) is a Gaussian

random vector, because 7(t) is a Gaussian random process. Hence, its

probability density is completely specified by its mean and covarianceo

Under H0, the mean of x1(tf) is zero since the residual has a mean value

of zero. The covariance of x1(tf), known as the information matrix, is

given by

tf

T(t)R-I (t)G I (t)dt (5.69)S 1 (tf) = f G 1

to

Under H I , XI (tf) has the same covariance, but its mean is given by
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E[_Xl(tf)IH1 ] = Sl(tf)a_l (5.70)

The two hypotheses can be rewritten as

H0: _1(tf) ~ N(_,Sl(tf)) (5.71)

HI: _(tf) ~ N(S1(tf)a1,S1(tf)) (5.72)

The problem of deciding between H 0 and H I has now been reduced to the

problem of deciding whether the Gaussian random vector _1(tf) has zero

mean or nonzero mean. Because the hypothesis H I is composite, an

appropriate test to use is the GLR test.

The GLR decision function is defined by

DF(tf) = _(tf)S_1(tf)ll(tf) (5.73)

Reference 10 contains a derivaton of the GLR test statistic. Then the

GLR test is given by

decide H 1

DF(tf) _ T 2 (5.74)

decide H 0

The threshold is written as T 2 because the decision function is a posi-

tive definite form. Therefore, a negative threshold would yield a trivi-

al test that always decides that H I is true. Also, writing the thresh-

old as T 2 rather than T will simplify the results of later sections.

To complete the derivation of the test, we must determine G.(t).
i

It can be shown (Reference 10) that Gl(t) is given by
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G I (t) = C(t)F 1(t) + d(t)_T(t) (5.75)

where

and

dF1(t)

dt = [A(t) - K(t)C(t)]F1(t ) + [b(t) - K(t)_(t)]_(t)

(5.76)

F1(t 0) = 0 (5.77)

The above equations specify the OSGLR test for the failure as

represented by Eq. (5.55). However, this representation has two weak-

nesses. First, because the basis functions _li(t) were chosen

arbitrarily, they may be highly correlated. The second problem is that

the basis functions are defined relative to an absolute time scale,

rather than with respect to the terminal time, tf. For a number of

reasons, it is desirable to define the basis functions relative to the

time tf, in which case the basis functions are _i(tf-t) rather than

_li(t). For one thing, if the transformed basis functions are functions

of tf-t, then they will have the same shape on the time scale defined

relative to the end of the observation interval, tf. Also, if the

system is time-invariant, the OSGLR equations will then be time-invariant

in steady state.

Both of these problems can be remedied in the following way: A

new set of basis functions will be defined that is the original set of

basis functions orthogonalized over the interval [t0,tf]. This will

eliminate the first of the problems discussed above. The second problem

may be solved by judicious choice of the original set of basis

functions. The vector of basis functions _1(t) is transformed by

an invertible linear transformation F(tl) , so that
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_2(t,tf) = F(tf)_1(t) (5.78)

The transformation F(tf) is intended to orthogonalize the vector of

basis function _2(t) over the interval [t0,tf] , although it is not
necessary that it do so. Based on this new vector of basis functions, a

new information vector l(tf), information matrix S(tf), and influence

matrices G(tf) and F(tf) can be developed. These quantities are related

to _1(tf), S1(tf), G1(tf) , and F1(t f) by the matrix F(tf). With the
help of these relationships, differential equations for these new

quantities can be derived. A useful definition is the following:

dFT(tf)

Aa(tf) _ - FT(tf ) dtf (5.79)

The equations for the OSGLR algorithm then become

d

dt_ -x(tf )
= -A_(tf)x(tf) + GT(tf)R-1(tf)_(tf) (5.80)

with initial condition

x(t0) = £ (5.81)

d

_f S(tf)
- A_(tf)S(tf) - S(tf)Aa(t f)

+ GT(tf)R-1(tf)G(tf) (5.82)

with initial condition

S(t 0) = 0 (5.83)
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G(tf) = C(tf)F(tf) + d(tf)_(tf,tf) (5.84)

d

dt_ F(tf)
[A(tf) - K(tf)C(tf)]F(tf)

+ [_(tf) - K(tf)_(tf)]_(tf,tf) - F(tf)Aa(tf) (5.85)

with initial condition

F(t 0 ) = 0 (5.86)

Now suppose that the basis functions are required to be shift

invariant so that

_2(t, tf) = _(tf - t) (5.87)

Note that with the basis functions in this form, the failure mode f(t)

has the form described in Eq. (5.56). It can be shown that the vector of

basis functions _(T) satisfies the differential equation

d

d-_i(T) -- A_(T) (5.88)

where A_ is a constant matrix, and T is a dummy variable defined by

A

T = tf - t (5.89)

A_ is related to Aa(tf) by the equation

A _ = -ATa (5.90)
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That is, Aa is also a constant. T may be thought of as defining a
relative time scale that runs backward from the end of the observation

interval, tf. In some ways, the relative time T is more natural for

the failure detection problem than the absolute time t because it

represents time relative to the current time (tf), rather than relative

to some arbitrary fixed initial time.

Note that the basis functions affect the OSGLR equations only

through Aa(t f) and _2(tf,tf). Therefore, if _2(tf,tf) is required to be

shift-invariant, the OSGLR equations will be functions only of the system

matrices, A_, and _(0). In other words, there is no need to specify the

underlying basis functions _li(t) or the transformation F(tf). Since

there is little motivation for using a basis which is not shift-

invariant, this will be assumed to be true.

The OSGLR equations for continuous-time systems are summarized in

Table 5.1.

After a failure has been detected, action must be taken by the FDI

system to accommodate for the failure. Accommodation involves two

distinct actions. First, the failed component, which is usually a sensor

or an actuator, must be physically isolated from the system so that it

can do no more harm. This aspect of accommodation is problem specific,

and will not be discussed further here.

The other action the FDI system must take is to prepare to contin-

ue performing failure detection. A number of bookkeeping operations must

be performed, such as changing the system models to account for the loss

of the failed component, and reinitializing the information vector and

information matrix to zero for each of the remaining components. The

Kalman filter must be updated to account for the failure, so that

monitoring of the other components can continue. More specifically, the

filter estimate and covariance should be updated as follows:

^ ^

x(t +) = x(t-) + F(t)a(t) (5.91)
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Table 5-I. Summary of continuous-time OSGLR equations.

Estimation error influence matrix propagation:

dF(t)

dt = [A(t) - K(t)C(t)]_(t) + [k(t) - K(t)_(t)]_T(0) + F(t)A_

F(t 0 ) = 0

Residual influence matrix:

G(t) = C(t)F(t) + d(t)_T(0)

Information vector propagation:

d/(t)

dt = A_(t) + GT(t)R-1(t)!(t)

/(t 0) =

Information matrix propagation:

dS(t)

dt
T + GT(t)R-I(t)G(t)

= A_S(t) + S(t)A_

s(t 0) = 0

Decision Function:

DF(t) = /T(t)S-1(t)l(t)
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P(t +) = P(t-) + F(t)P (t)FT(t) (5.92)a

where t- and t+ are the times just prior to t and just after t, respec-
tively.

5.3.3 OSGLR Performance Analysis

The performance of a failure detection and isolation (FDI) test

depends on three types of events: false alarms, the detection of fail-

ures, and the (correct or incorrect) isolation of failures. A complete

probabilistic description of these events, together with the distribution

of failures, is required in general to determine the performance of a

fault-tolerant system.

Unfortunately, it is generally quite difficult to evaluate the

performance of an FDI test analytically. In principle, the performance

of an FDI test could be determined by Monte Carlo simulation. However,

the probability of false alarm, missed detection, or incorrect isolation

is very small for an effective FDI test. The amount of simulation re-

quired to estimate these probabilities accurately by Monte Carlo methods

is therefore prohibitive.

In Reference 10, a partial solution to the problem of evaluating

the performance of the OSGLR test is given. The false-alarm performance

of the OSGLR test is considered and an asymptotic expression for the

steady-state false-alarm rate of the continuous-time OSGLR test is

derived. Based on this analysis, an asymptotic bound is derived for the

steady-state false-alarm rate of the discrete-time OSGLR test, and the

conditions under which this bound is valid are discussed.

The derivation of the aforementioned performance criteria for the

OSGLR algorithm are quite lengthy and complex. Therefore, only the

resultant expressions obtained are presented here. For the continuous

time case the false alarm rate, as a function of the threshold T, is
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= #]TP
-tr[A -T2/2 {I - + 0

1 F_p + 112P/2 e

(5.93)

where F is the gamma function.

The bound for the discrete time case is

1 _< -_n--(det _@)TP. e-T2/2 {I - --P2 + 0 I_}, T + -

At F(_ + I) 2 p/2 T T

(5.94)

The conditions under which this bound is valid are discused in

Reference 10.

The asymptotic results obtained have been compared to exact

results obtained numerically. As a practical matter, numerical results

can be obtained only for the scalar case (p=1). Figure 5.1 shows the

relative error in these approximations as a function of the threshold,

T. (The relative error is defined by the error in the approximation

divided by the actual value of the eigenvalue.) As might be expected,

the two-term approximation is significantly better than the one-term

approximation. The error in the two-term approximation is less than I%

for T larger than 4.0. Even the one-term approximation is accurate to

within 5% for thresholds larger than 5.0. For practical purposes,

determining the false-alarm rate to within 1% is probably adequate.

5.4 Results

The OSGLR and GLR tests ware applied to the problem of detecting

failures in a C-130 transport aircraft. Simulation results are presented

which allow a comparison of the performance of these two algorithms. The

nominal flight condition is defined to be at an altitude of 304.8 m (!000

ft) with an airspeed of 77.2 m/s (150 knots). The turbulence level used
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had a standard deviation of _ = 6.5 ft/s, which corresponds to heavy

turbulence. The control surfaces are defined as per Table 5-2 for this

section of the report.

Table 5-2. C-130 control surface definition.

Input Control Surface

elevator

right aileron

left aileron

rudder

right flap

left flap

Both tests were implemented in discrete time. The Kalman filter states

are those listed in Table 2.1 of Section 2.2. In addition, five addi-

tional states were included in the Kalman filter to model the effects of

turbulence. The measurements used are those described in Section 2.2.

The measurements were assumed to be taken at a rate of 50 Hz.

The basis functions of the OSGLR failure hypotheses were deter-

mined by trial and error, so that good performance was achieved for many

different failure modes. For each failure hypothesis, six basis func-

tions were used in the truncated series expansion. Six basis functions

were found to be adequate for all the failures simulated. The use of

more than six sometimes caused numerical problems. The basis functions

are the discrete-time equivalent of the Laguerre functions, with time

constant

T = 3.0 s (5.95)
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That is, the basis functions are obtained by orthonormalizing the

(discrete-time) functions

_i(k ) ki-1 k= Z , i = I, 2, ..., 6 (5.96)

where

-At/T
z = e (5.97)

where At = 0.02s is the sampling interval. Other basis functions, such

as the Legendre functions, were not tested. The results are not

sensitive to the choice of time constant, so long as it is of the same

order as the time scale over which the faiure is detected.

The assumed failure mode of each GLR failure hypothesis is a step

function (or bias) of unknown magnitude occurring at time 8. The failure

onset time e is constrained to the data window t - tw _ e _ t, where

tw is the length of the window. The GLR test was implemented using two

different data windows: a 2 s (100 sample) window and a 5 s (250 sample)

window. Most of the results presented in this section are for the 2 s

data window.

The simulation results can be divided into two categories: those

based on the linearized models and those based on the nonlinear simula-

tion. For the most part, the simulation results presented are based on

the linearized models. The reasons for this are twofold. First, the

linear simulations demonstrate the characteristics of the OSGLR test

unobscured by nonlinear effects. Second, the linear simulation requires

considerably less computation than the nonlinear simulation. The

nonlinear simulation is used to show the effects of nonlinearities and to

generate test cases that are not easily generated using the linear

simulation.
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In order to determine the performance of the algorithms, a detec-

tion threshold must be set for each. Becauseno performance specifica-
tions have been given, the selection of the threshold is somewhatarbi-

trary. Wewill set the OSGLRthreshold so that the resulting false-alarm
rate of each OSGLRdetector is 10-4 per hour or less. Using the re-

sults for discrete-time systems presented in Section 5.3.2 leads to

T2 = 56.86

The false-alarm rate is very sensitive to the selection of the

threshold. As a result, the threshold is not very sensitive to the

specification of the false-alarm rate. For example, if we require that

the false-alarm rate be decreased to 10 -6 per hour, then the threshold

must be increased to only T 2 = 67.10. Thus, the results presented here

will not be sensitive to the exact value of the false-alarm rate

specification.

It is somewhat more difficult to determine the threshold for the

GLR test. In order to compare the GLR and OSGLR tests on a fair basis,

we should select the threshold for the GLR test so that each GLR detector

has the same false-alarm rate as the OSGLR detectors. Unfortunately, no

analytic expression for the false-alarm rate of the GLR test exists. The

false-alarm rate could be determined in principle by Monte Carlo simula-

tion. However, the amount of simulation that would be required would be

enormous, because of the very small rate at which false alarms occur.

Therefore, we will simply set the GLR detection threshold to the same

value as the OSGLR detection threshold.

5.4.1 Linear Simulation with No Failure

The C-130 linear simulation was used to generate Kalman filter

residuals for the unfailed system. The duration of the simulation was

50 s.
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Figure 5.2 shows the OSGLR detection decision functions for the

six actuators for this simulation. Several features in the figure are

noteworthy. First, since each of the decision functions can be shown to

be a central chi-squared random variable with six degrees of freedom, the

mean value of each decision function should be 6. This fact appears to

be verified by the figure.

Second, some of the decision functions have peak values that

approach 20. This is far below the detection threshold T 2 = 56.86, as

would be expected for a simulation of such short duration.

The third noteworthy feature of Figure 5.2 is that the detection

decision functions corresponding to the ailerons and flaps (DF2, DF3,

DF5, and DF 6) show a striking similarity. This is not unexpected, as we

saw in previous sections that the failure of a given wing control surface

(aileron or flap) is not easily distinguishable from the failure of any

other wing control surface. This was due to the fact that these four

surfaces have similar effects on the dynamics of the aircraft. There-

fore, the OSGLR detectors for these surfaces are similar. Hence, the

OSGLR decision functions for these surfaces are similar, even when there

is no failure present. This is an effect that will be apparent in all of

the simulations, whether a wing control surface has failed or not.

Figure 5.3 shows the GLR detection decision functions for the same

simulation. For this case, the data window for the GLR test was 2 s long

(100 samples). The general character of the GLR decision functions is

somewhat different than that of the OSGLR decision functions. The de-

cision functions seem to be somewhat noisier and to have a smaller mean

value.

However, there are also some similarities between Figures 5.3 and

5.2. First, the GLR decision functions for the wing control surfaces

(DF 2, DF 3, DF5, and DF 6) are all similar, although the similarity is not
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as great as was the case for the OSGLR decision functions. Second, the

peak values of some of the GLR decision functions are close to 20, as was

the case with the OSGLR algorithm. From this we may conclude that the

assumption that the GLR and OSGLR detection thresholds are the same is

not unreasonable.

5.4.2 Elevator Bias Failure

In this case, a -0.01745 rad (-I ° ) bias of the elevator was

simulated, using the linear simulation. The failure occurred at time t =

10 s of a 50 s simulation.

Figure 5.4 shows the OSGLR detection decision functions for the

six control surfaces. The decision functions generally have the charac-

teristics that we expect. Immediately following the onset of the fail-

ure, the decision function corresponding to the elevator, DFI, in-

creases rapidly, indicating a failure of the elevator. To a lesser ex-

tent, the other decision functions increase as well, although they are

always much less than DF I . For the detection threshold selected,

detection occurs at t = 10.22 s, 0.22 s after the onset of the failure.

Several other features of the figure are noteworthy. First, the

four decision functions DF2, DF3, DF5, and DF 6 are very nearly equal.

This is a characteristic that will be seen in all the simulations. It is

simply a reflection of the fact that the four OSGLR detectors for the

control surfaces on the wing are similar, because the effects of these

surfaces on the aircraft are similar. Second, note that the elevator

failure is easily isolated, because DF I is significantly larger than

the other decision functions.

Figure 5.5 shows the GLR detection decision functions for the same

simulation, using a 2 s (100 sample) data window. For the 2 s period

immediately following the failure, the GLR detection functions closely

resemble the OSGLR decision functions. The elevator decision function

increases rapidly, crossing the detection threshold at t = 10.12 s.
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It is not surprising that the GLRdetection time is less than that

of the OSGLRtest, because the GLRhypotheses can represent the failure

modeexactly, whereas the OSGLRhypotheses can only approximate the
failure mode. Also, the time scale of the basis functions is T = 3 s,

which is considerably longer than the time required to detect the fail-

ure. If the time scale is reduced to T = 0.5 s, then the detection time

for the OSGLRtest is the sameas for the GLRtest. However, it was felt

that the longer time scale was desirable to allow for failures that take

longer to detect. Furthermore, the detection time of 0.22 s is probably
acceptable.

Despite the good performance of the GLRtest, the algorithm does
display someundesirable characteristics. Note that at t = 12 s (2 s

after the onset of the failure), the decision functions suddenly level
off. This is due, of course, to the finite data window of the GLRtest.

The GLRalgorithm accumulates data for only the length of the data win-
dow, which is 2 s long in this case. After that time, information about
the failure is lost.

Furthermore, note that DF5 exceeds DFI after t = 33.2 s. Had the

threshold been larger, or the failure been smaller, the GLR test could

have isolated the failure to the wrong component, namely, the right

flap. The reason for this behavior is again related to the data window.

After t = 12 s, the actual failure (a step failure at t = 10 s) is not

one of the failures considered by the GLR test. Therefore, the behavior

of the algorithm is unpredictable after t = 12 s.

The OSGLR test does not have the undesirable characteristics of

the GLR test discussed above. The OSGLR hypotheses can represent the

step failure, at least approximately, over a long time period, even

though the approximation is somewhat inaccurate for a very short time

period. Over a long time period, the OSGLR test continues to accumulate

information about the failure. As a result, the OSGLR test does not

display the characteristics of the GLR test which are associated with the

finite data window.
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5.4.3 Rudder Bias Failure

In this case, a 0.0349 tad (2 ° ) bias of the rudder was simulated,

using the linear simulation. The failure occurs at time t = 10 s of a

50 s simulation.

Figure 5.6 shows the resulting OSGLR detection decision func-

tions. In many ways, this simulation resembles that of the elevator.

The decision function corresponding to the failed component, DF4,

increases rapidly following the onset of the failure. The other decision

functions increase also, but much more slowly than DF 4. The failure is

detected at t = 13.06 s, 3.06 s after the beginning of the failure.

The conclusion which can be drawn is that rudder failures are easily

distinguishable from the other actuator failures. This is demonstrated

by the extremely large difference between DF 4 and the other decision

functions.

Figure 5.7 shows the GLR detection decision functions for this

simulation, using a 2 s (100 sample) data window. After the onset of the

failure, the rudder decision function, DF4, increases quickly, indicat-

ing a failure of the rudder. The other five decision functions increase

little, if any. The failure is detected at t = 11.80 s, when DF 4 ex-

ceeds the detection threshold. Shortly thereafter, at t = 12 s, DF 4

abruptly changes character. At this time, DF 4 levels off, except for

wide fluctuations due to noise. Again, this behavior is attributable to

the finite data window of the GLR test. Note that had the detection

threshold been only slightly larger, say, T 2 = 75, then the detection

time would have been greatly increased, from 1.08 s to 7.08 s.

Note that the detection time for the OSGLR test is somewhat longer

than for the GLR test. The reason for this is as follows. The step

failure in the rudder causes rapid changes in the mean values of some of

the Kalman filter residuals. The OSGLR hypotheses are unable to

accurately represent the discontinuities in the residuals. Therefore,

some of the energy of the failure signature cannot be used by the OSGLR
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algorithm to detect the failure. On the other hand, the GLRhypotheses

can represent the failure signature exactly within the data window.

The overall performance of the OSGLRtest for this case is

generally good. Although the detection time is slightly longer for the

OSGLRtest than for the GLRtest, the OSGLRalgorithm appears to be more
robust than the GLRalgorithm.

5.4.4 Right Aileron Bias Failure

In this case, the linear simulation was used to simulate a

0.0175 rad (I °) bias failure of the right aileron. The failure occurred

at time t = 10 s of a 50 s simulation.

Figure 5.8 shows the OSGLR detection decision functions for this

simulation. Immediately following the failure, these four decision

functions corresponding to the wing control surfaces (DF2, DF3, DF5, and

DF 6) begin to rise steadily. To the scale of the plot, these four de-

cision functions cannot be distinguished. The elevator decision function

(DF I ) also rises steadily following the failure. On the plot, DF I

appears to be close to the four decision functions of the ailerons and

flaps. On an absolute scale, however, this difference is large. Fi-

nally, the rudder decision function (DF 4) also increases somewhat, al-

though not nearly so much as the other five decision functions. For the

detection threshold given, the detection occurs 0.56 s after the onset of

the failure.

In order to determine which of the four detection decision func-

tions of the wing control surfaces is largest following the failure,

(some of) the OSGLR isolation decision functions are plotted in Fig-

ure 5.9. The isolation decision function DFij is defined to be

DF.. = DF. - DF.
l 3 l 3

(5.96)

Shown in the figure are DF23, DF25, and DF26. Following the failure, all
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three of these isolation decision functions are positive, correctly

indicating that the right aileron is the surface that has failed. Also,

except for a brief period immediately following the failure,

DF26 > DF25 > DF23

These results imply that it is relatively easy to distinguish between

failures of the right aileron and the elevator or rudder, but

progressively more difficult to distinguish a right aileron failure from

the failure of the left flap, the right flap, and the left aileron.

Note that because the failure of the right aileron is barely

distinguishable from failures of the other three wing control surfaces,

it would be wise to use an isolation threshold for this system to prevent

incorrect isolations. We have not attempted to determine an isolation

threshold for this study. However, it is clear that an isolation thresh-

old that is large enough to be effective at preventing incorrect isola-

tions will cause a significant delay in the isolation of the failure,

perhaps 10 s or more.

Figure 5.10 shows the GLR detection decision functions for this

simulation. (Note the difference in scale from Figure 5.9.) In many

respects, Figure 5.10 resembles Figure 5.8. Immediately following the

failure, the aileron and flap decision functions increase rapidly. At

t = 12 s, however, the rate of increase of these decision functions

slows, due to the finite data window. To a lesser degree, the elevator

and rudder decision functions increase also. Detection occurs 0.48 s

after the failure.

Figure 5.11 shows the GLR isolation decision functions DF23 ,

DF25 , and DF26. Note that the GLR isolation decision functions are

somewhat smaller than the OSGLR isolation decision functions (cf Figure

5.9). Once again, this is because the finite data window limits the

amount of information that can be accumulated about the failure. Also
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note that even as late as 7.5 s after the failure, DF23 is occasionally

negative, indicating that the failure is in the left aileron, rather than

the right aileron. Even at t = 26 s, 16 s after the failure, DF23 is

close to zero. Thus, the behavior of the OSGLR test seems to be more

robust for this case.

5.4.5 Rudder Ramp Failure

The failures simulated thus far have all been step bias failures.

This puts the GLR test at an advantage, since the GLR test assumes a bias

failure mode, whereas the OSGLR test assumes a more general failure mode

shape. To see how these tests perform with a different failure mode, a

ramp failure of the rudder was simulated, using the linear simulation.

The ramp begins at t = 10 s, and the ramp increases at a rate of

0.001745 rad/s (0.1 deg/s).

Figure 5.12 shows the resulting OSGLR decision functions. The

decision functions change very little until about t = 15 s. At that

time, the rudder decision function begins to increase, albeit slowly at

first. As the magnitude of the failure increases, DF 4 increases more

rapidly. DF 4 crosses the detection threshold at t = 23.08 s, so that

the time to detection is 13.08 s. Meanwhile, the other five decision

functions increase only slightly until about t = 24 s, at which time

these decision functions begin to increase. Thus, this failure is easily

detected using the OSGLR test.

Figure 5.13 shows the GLR detection decision functions for this

simulation, using a 2 s (100 sample) data window. This figure is similar

to Figure 5.12, except that the decision functions are generally smaller

than for the OSGLR test. Also, DF 4 seems to be quite a bit noisier.

The detection time for the GLR test is 18.88 s, which is significantly

longer than for the OSGLR test. The major reason for this is that the

data window is too short to allow enough data to be accumulated to detect

the failure.
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To demonstrate this last point, the GLRdata window was increased

to 5 s (250 samples) (Figure 5.14). In this case, DF4 increases more
rapidly than with the 2 s data window. The detection time for this case

is 14.90 s, which comparesfavorably with the OSGLRtest, although the

OSGLRtest still performs slightly better than the GLRtest in this case.

5.4.6 Nonlinear Simulation with No Failure

This simulation is similar to that of Section 5.4.1, except that

the nonlinear simulation was used instead of the linear simulation. In

this case, it was necessary to implement the Kalman filter in order to

generate the residuals.

Figure 5.15 shows the OSGLR detection decision functions for the

nonlinear simulation with no failures. Ideally, the decision functions

should resemble those of Figure 5.2. However, the decision functions in

this case are quite different. Specifically, the decision functions for

the wing control surfaces (DF2, DF3, DF5, and DF 6) have peak values of

approximately 500, which is a factor of 25 larger than the peaks seen in

Figure 5.2. This effect is due to the differences between the nonlinear

model and the linearized model generated from it. It was determined that

the greatest source of error is due to mismodeling of the aerodynamic

moments about the roll axis. This produces a bias in the estimate of

roll rate, which is small compared to the standard deviation of the

estimation error. However, this bias is integrated by the Kalman filter

to produce a very large bias in the estimate of the bank angle. This in

turn caused the residual associated with the bank angle measurement to

be significantly biased. Because the four wing control surfaces

primarily affect the roll axis, the decision functions associated with

these surfaces are the ones most affected by this modeling error. The

decision function associated with the elevator is also affected, because

elevator deflections cause a moment about the roll axis, due to coupling

between the longitudinal and the lateral dynamics. To a lesser extent,
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the rudder decision function is also affected, because the rudder can

produce motion in the roll axis. However, the rudder is not as effective

in producing rolling moments as the flaps, ailerons, or elevator (at this

flight condition). Therefore, the rudder decision function is not as

large as the others.

Figure 5.16 shows the GLR detection decision functions for the

same simulation. Again, a 2 s (100 sample point) data window was used.

As was the case with the OSGLR algorithm, the GLR decision functions are

larger for the nonlinear simulation than for the linear simulation. In

this case, the decision functions corresponding to the control surfaces

on the wing reach peak values of approximately 35. This is much lower

than the peak values of the OSGLR decision functions. There are two

reasons for this. First, the GLR data window is relatively short. The

energy in the residuals due to the biases in the estimation error is

correlated over a time period much longer than 2 s. Hence, we might

expect that a GLR detector with a longer data window would produce much

larger decision functions. In fact, this is the case, as shown by Fig-

ure 5.17, which shows the GLR detection decision functions using a 5 s

(250 sample) data window. (Note the difference in scale from Fig-

ure 5.16). In this case, the decision functions corresponding to the

control surfaces on the wings have peak values of approximately 75, which

is about twice as large as the peak values using a 2 s window.

The other reason that the GLR decision functions are smaller than

the OSGLR decision functions is more subtle. Essentially, each GLR or

OSGLR detector finds the failure input f(t) which generates a mean proc-

ess in the residuals that most closely matches the observed residual

process. However, the GLR algorithm considers (in this case) only step

failures, whereas the OSGLR algorithm considers more general failure

modes. Hence, the OSGLR algorithm can find among its hypotheses a fail-

ure input time history that matches the observed residuals more closely

than does any of the step failures considered by the GLR algorithm.

Thus, the same property of the OSGLR algorithm that makes it robust to

failure mode uncertainty also makes it more sensitive to modeling errors.

125



4O

0
-I-)

> 20-

i I i I

0

-r-I

4-)
,-C
t_

"r-I

4O

20-

0 ! I I I

4O

o
r--I
-r-I

20-

LH
(D

0
0

I

2O

I i u I.Uil

Idl'|_

I

4O 60 80 100

TIME, t (seconds)

Figure 5.16. GLR detection decision functions for the nonlinear

simulation with no failures and a 2 s (100 sample)

data window

126 i
L



40

20-

0
i i I I

r--I

4-.)

"r-I

4O

i i

4O

r-t

20-

0
0

I
I I

20 40
I I

60 80 1O0

TIME, t (seconds)

Figure 5.16. GLR detection decision functions for the nonlinear

simulation with no failures and a 2 s (100 sample)

data window (Cont.)

127



8O

0

>

,.-4

40-

0

8O

0

(11

-el

g
-el

40-

0 I I I

8O

0

.,.4
4O

0

0
i I

20 40
! !

60 80 1O0

TIME, t (seconds)

Figure 5.17. GLR detection decision functions for the nonlinear

simulation with no failures and a 5 s (250 sample)

data window

128 ]



8O

40,

| ! I |

8O

r_

-_ 40-

.r-I
P_

! ! I

8O

q-4
(D

40-

0 I I

0 20 40 60 80 100

TIME, t (seconds)

Figure 5.17. i GLR detection decision functions for the nonlinear

simulation with no failures and a 5 s (250 sample)

data window (Cont.) i

129



5.4.7 Stuck Elevator

In this case, the nonlinear simulation was used to simulate a

stuck elevator. Such a failure might be caused, for example, by a jam of

a mechanical linkage. The elevator was struck at % = 0.0977 rad

(0.56°). By comparison, the trim valve of the elevator deflection is

approximately _E = 0.020 rad (1.15°). The failure occurred at time t = 10

s of a 50 s simulation. Figure 5.18 shows the resulting error in the

elevator position, i.e., the difference between the actual elevator

position and the commanded elevator position. Note that the history of

the error does not fit into any easily characterized category, such as a

bias or ramp failure.

Figure 5.19 shows the resulting OSGLR detection decision func-

tions. The OSGLR test performs quite well in this case, despite the

complexity of the failure input. Approximately I s after the onset of

the failure, the elevator decision function, DFI, increases rapidly,

indicating a failure. The other five decision functions also increase,

but they are always significantly smaller than DF I . For the threshold

selected earlier, the failure is detected at t = 11.94 s. (Note,

however, that this threshold would not be used unless the problem of

modeling errors had been addressed.)

Figure 5.20 shows the GLR detection decision functions for this

case, using a 2 s (100 sample) data window. For the 3 s immediately fol-

lowing the onset of the failure, the GLR decision functions resemble the

OSGLR decision functions. (cf. Figure 5.19.) DF I increases rapidly,

indicating a failure of the elevator. For the threshold selected, the

detection of the failure occurs at t = 12.14 s, 2.14 s after the onset of

the failure. This is not significantly different from the OSGLR test.

However, this result is somewhat misleading. Note that at about

t = 13 s, DF I begins to decrease for the GLR test, until at t = 15 s it

is at about the same value that it had before the failure. For a brief

time, the four decision functions corresponding to the control surfaces
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on the wing exceed DF1. At t = 16 s, DFI again increases until

t = 18 s, where once again DFI decreases slightly. At about t = 19 s,

DF5 exceeds DFI slightly. Shortly thereafter, DFI begins to increase
steadily and is always greater than the other decision functions.

Also, note that if the detection threshold is increased (e.g., to
account for modeling errors), then the decision time is likely to in-
crease significantly. For example, if the threshold is set to T2 = 200,

then the time of the detection would be t = 22.52 s, 12.52 s after the

failure. On the other hand, the time to detection for the OSGLRtest for

this threshold is only 6.82 s.

This behavior is caused by two separate effects. The first is the

relatively short (2 s) data window. Thus, whenthe failure input sub-

sides in the vicinity of t = 15 s (Figure 5.18), the GLRdecision func-
tions also decrease.

The other reason for this behavior is that the actual failure mode

does not agree with any of the hypothesized failure modesof the GLR

algorithm. As a result, the results of the test are unpredictable. In

particular, DFI is sometimes less than the other decision functions.
As a result, we see that the GLRtest is not robust. On the other hand,

the failure modecan be represented, at least approximately, by the OSGLR
failure hypotheses. As a result, the OSGLRtest is robust to failure

modeuncertainty, and does not have the undesirable properties of the GLR
test displayed in Figure 5.20.

Finally, note that increasing the length of the GLRdata window to

5 s (250 samples) improves the performance of the GLRtest only slightly
(Figure 5.21). Immediately following the failure, the behavior of the
decision functions is the sameas for the GLRtest with a 2 s data win-

dow. Following time t = 12.5 s, however, DF1 declines only slightly,

whereas DF5, DF2, DF3, and DF6 continue to increase. At about t =
17.5 s, these four decision functions all exceed DFI . It is not until

t = 19 s that DFI again is the maximumdecision function. With the
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threshold T2 = 56.86, the detection time is 2.14 s, which compares

favorably with the OSGLR test. However, for the threshold T 2 = 200,

the detection time is 9.79 s, which is somewhat longer than the detection

time for the OSGLR test with that threshold.

5.4.8 Summary

As measured by the time required to detect a failure, it would

appear that the performance of the OSGLR test is roughly comparable to

that of the GLR test. Table 5.3 summarizes the detection times of the

two tests for the control surface failures simulated. Generally, the

performance of the GLR tests is better when the failure mode simulated is

the same as one of those hypothesized in the GLR failure hypotheses. For

other failure modes, the OSGLR test performs better. Nevertheless, the

detection times are comparable for all of the failures.

However, the results presented in Table 5.3 are somewhat mislead-

ing. In almost all of the test cases, the GLR test exhibited nonrobust

behavior. This is caused by two features of the GLR test. First, in

order to make the GLR test computationally feasible, it is necessary to

restrict the hypothesized time of failure by using a data window. As a

result, if detection does not occur when the time of the failure is

within the data window, then information about the failure is lost.

Second, the GLR test assumes a particular failure mode. Consequently,

the behavior of the test is not predictable when a different failure mode

occurs.

137



Table 5.3. Summary of the detection performance of the OSGLR

and GLR tests.

Failure Mode

Simulated

,, ,, ,

-0.01745 rad(-1.0 °)

Elevator Bias

0.0349 rad(2.0 °)

Rudder Bias

0.01745 rad(1.0 °)

Right Aileron Bias

0.001745 rad/s

(0,1 °/S)

Ramp Rudder

Stuck

Elevator

Time to Detect Failure (s)

GLR

OSGLR

: , ,

0.22

3.06

0.56

13.08

1 .94

2 s Data

Window

0.12

1.80

0.48

18.88

2.14

5 s Data

Window

I' ....

0.12

I .80

0.48

14.90

2.14

On the other hand, the OSGLR test does not exhibit these undesir-

able characteristics. The test can continue to accumulate information

about a failure for as long as the truncated series expansion of the

OSGLR failure hypothesis can adequately represent the failure. Also, the

series expansion can represent, at least approximately, many different

failure modes. Therefore, the OSGLR test is robust to failure mode

uncertainty, whereas the GLR test is not.

Furthermore, the OSGLR test requires far less computation than

does the GLR test, at least in this case. Table 5.4 summarizes the

computational requirements of the two tests. Each number in the table is

the ratio of the CPU time required to run a particular test to the length

of the simulation for which the test was implemented. The tests were

implemented in FORTRAN on a Digital Equipment Corporation VAX 11/780.
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For each test, six detectors were implemented, corresponding to the six

control surfaces. The GLR test requires 18.5 or 46.2 times more computa-

tion than the OSGLR test, depending on whether a 2 s or 5 s data window

is used for the GLR test.

Table 5.4. Computational requirements of the OSGLR

and GLR algorithms.

Ratio of CPU Time to Simulation Time

OSGLR GLR

6 Basis

Functions

0.686

2 s Data

Window

• _,, ,- ,,

12.66

5 s Data

Window

,i ,

31.66

One disadvantage of the OSGLR test is that it appears to be more

sensitive to modeling errors than the GLR test.
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CHAPTER6

DISTINGUISHABILITYOF FAILURES

6.1 Introduction

In some systems, the failure of one component may closely mimic

the effects of the failure of another component. In such systems, it

may be impossible to distinguish between different types of failures,

regardless of the FDI algorithm used. Therefore, quantitative measures

would be desirable to indicate to what extent the failures of different

components are distinguishable. The measures would serve two purposes:

First, they could be used to alert the system designer that a change in

the system is needed to achieve fault tolerance. Such a change could

be, for example, the addition of more sensors or the change in location

of an actuator. Second, the measures may be used to determine whether

the inability of a particular FDI algorithm to isolate failures is a

deficiency of the algorithm or a property of the system.

In this section, two measures of distinguishability are proposed

(Reference 10). The first of these is interpreted as the distance

between two failure hypotheses, assuming that one failure mode is fixed

and that the other failure mode is allowed to take on its worst-case

value. Based on a geometric interpretation of this distance, a second

measure of distinguishability is defined, which is interpreted as the

angle between the hypotheses.
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6.2 Distance Measure

The distinguishability measure presented below will measure how

closely the failure of one component, say component j, can mimic the

failure of another component, component i, when the failure mode of

component i is given. If the failure mode of component j is thought of

as an unknown control, and "how closely" is interpreted as implying a

cost function, then this formulation could be expected to lead to some

sort of optimal control problem. As shown below, this is indeed the

case.

We will formulate the problem as follows: First, it is assumed

that the observation interval [t 0, tf] is fixed. Next, the failure

mode of component i is specified to be some function, fi(t). For the

time being, it is assumed that the failure mode fj(t) is specified as

well. Note that for either failure, the onset time of the failure, 8,

may be anywhere in the interval [t O , tf]. Then the problem of de-

termining which component has failed is a binary hypothesis testing

problem, with hypotheses

dx(t)

Hi: dt = A(t)x(t) + w(t) + b i(t)fi(t) (6.1)

y(t) = C(t)x(t) + v(t) + d.(t)f.(t) (6.2)
.... 1 1

dx(t)

H.: = A(t)x(t) + w(t) + b.(t)f.(t)
] dt -- -- --9 3

(6.3)

y(t) = C(t)x(t) + v(t) + d.(t)f. (t) (6.4)
.... 3 3

Note that because the failure modes fi(t) and fj(t) are assumed

known, these hypotheses are simple, rather than composite.
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The data _(t), t O _ t _ tf} will be reduced to a sufficient

statistic which contains all the information about the two hypotheses.

To begin, the data are filtered using a Kalman filter based on the

unfailed (H 0) system equations

dx(t)

H0: dt = A(t)_(t) + _(t) (6.5)

z(t) = C(t)_(t) + z(t) (6.6)

The hypotheses Hi and Hj can then be written as

Hi: _(t) = 70(t) + _(t) (6.7)

H:3 __(t) = ___(t) +aj(t) (6.8)

where _(t) is the Kalman filter residual, and 7_0(t) is a zero-mean, white

Gaussian process with intensity R(t). mi(t) and _j(t) are the means

in the residual _(t) under H i and Hj, respectively.

The sufficient statistic for this problem is given by

X = ft0tf [%(t) - --im"(t)]TR-l(t)7(t)_ dt
(6.9)

Because _(t) is a Gaussian random process, X is a Gaussian random vari-

able. The mean of X under H i is given by

Xi = E[XIH i ]

tf

= ft 0 [_j(t)- _i(t)]TR-l(t)mi(t) dt
(6.10)
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Similarly, the meanof X under Hj is given by

Xj = E[XIH. ]
3

tf [m.(t) - m.(t)]TR-1(t)m.(t) dt
= ft 0 --3 --i --3

(6.11)

The variance of X under H i is given by

S = E[(X - Xi)21Hi ] (6.12)

The final expression for the variance is

tf [m.(t) - m (t)] T R-1(t)[m.(t) - m.(t)] dt (6.13)
S = ft 0 --3 --i --3 --l

The variance of X under Hj is also given by S.

Thus, the problem of deciding whether H. or H. is true has been
3

reduced to that of deciding whether the Gaussian random variable X has

mean _ or _. The parameter that determines the performance that can be

achieved under these circumstances is the signal-to-noise ratio, defined

by

2

d2 : (5 -
S (6.14)

But it can be shown that

- Xi = S (6.15)

Therefore,
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d2 = S (6.16)

So the distance between the hypotheses is defined to be

d = S1/2 (6.17)

The distance d is simply the numberof standard deviations that separate

the conditional means XI and X2"

Up to this point, it has been assumed that both failure modes

f.(t) and f.(t) are known. However, what we really want is to find the
i ]

failure mode f.(t) that most closely mimics the failure mode f.(t). In
3 l

other words, we want to find the distance between the hypotheses for the

worst-case fj(t). Therefore, the distinguishability measure

_j(fi(.), tf) is defined by

Aij (fi(°), tf) = min d
f.(t)
]

to_t<__t f

(6.18)

or alternatively,

A2j (f.(°) tf) = min1 i
f. (t)
3

t t_<tf

tf [m (t) - m (t)] T R -I (t)[m. (t) - m. (t)] dt

Yt0

(6.19)

The problem of determining AT. has two interpretations. The
13

obvious interpretation is as an optimal control problem and the problem

may be recognized as being equivalent to the optimal linear quadratic

tracking problem. A less obvious interpretation is that the cost

function to be minimized is the same as that which is minimized to solve

the optimal least-squares filtering problem. In this case, fj(t) is
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interpreted as infinite variance noise driving the state e(t), rather

than as a control input.

6.3 Geometric. Interpretation

In this section, a geometric interpretation of the distance meas-

ure _j will be provided. Based on that interpretation, a relative

measure of distinguishability will be defined.

Consider the continuous-time case. The set of square-integrable,

m-dimensional vector functions on the interval [to, tf] is denoted

m m is a complete, infinite-dimensionalby L_[t0, tf], or simply L 2. L 2

m is defined by
vector space. A valid inner product for L 2

tf

<m1(o), _2(.)> = ft 0 m_(t) R -I (t) m2(t) dt (6.20)

where R(t) is a symmetric, positive definite matrix.

m is defined by
L 2

If the norm for

IIm(.)tl = <m(.), m(-)> 1/2 (6.21)

m is a Hilbert space.
then L 2

Given this background, the problem of determining Aij may be

succinctly stated as

= "ill
m. eV.
-_ 3

(6.22)

m that is the set of all valid m.(.).
where V. is the subspace of L 23 --3

By the orthogonal projection theorem, the minimizing _(o), denoted by

m_(o), is the unique m_(o)eV, such that
3 3 3

<m.(.) - m_(.), m.(.)> = 0 for all m.(o) e V. (6.23)
--l --3 --3 --J 3
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In other words, m*(.) is the projection of m. (.) onto V., and the repre-
--3 --l 3

sentation error

m. (.) - m*(.) (6.24)
--i --3

is orthogonal to the subspace Vj. In particular,

<__i(.)-_(.),%(.)>: 0 (6.25)

That is, the representation error is orthogonal to m_(.). This situa-
-3

tion is represented graphically in Figure 6.1. In the figure, the vec-

m is depicted as being spanned by _I , _2' _3' whereas thetor space L 2

subspace V.3 is spanned by _i and _2.__ Ai3. is simply the length of the

vector m. (-) - m_(,).
l --9

Based on this geometric interpretation, a relative measure of

distinguishability, ui_3 (f'(')'l tf), will be defined as the angle between

m.(.) and m_(-). Because the representation error is orthogonal to the
-_ -3

projection, _ij is given by

(')=;()II
u.. = sin -- " " --g " (6°26)

,j II__i(.)tl

But by definition,

(')°:()II
--g

Therefore,

A° °

_i3 = sin-1 . . 13• llm_()ii (_)
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l m-i( ')__ REPRESENTATION ERROR
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\

Figure 6.1. Geometric interpretation of the orthogonal

projection theorem.
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AS a practical matter, both aij and _j are useful measures

of the distinguishability of failures. As noted earlier, if _j/2 is

small, say on the order of unity or less, then it will not be possible

to isolate a failure of component i or j (with failure mode fi (o) or

f.(°)) reliably. If Ai_/23 is small, but eij is large (say, greater than3

0.349 rad or 20°), the problem is that the energy in the failure

signature mi (o) is small, not that the two failure types are similar.

On the other hand, if Aij/2 is large, but _ij is small (say,

less than 0.08725 tad or 50°), then isolation should be possible, given

knowledge of fi(-) and fj(.), and given that the system model is

accurate. However, the isolation performance is likely to be sensitive

to failure mode uncertainty, modeling uncertainty, and of course to the

actual (sequential) FDI test used.

6.4 Results

The distinguishability measures just defined will be used to

determine the degree to which failures of the control surfaces for the

C-130 aircraft system are distinguishable from one another.

Recall that the distance between two hypotheses H. and H., Ai_'3l 3

and the angle between two hypotheses, eij' are functions of the (assumed)

failure mode of H , f.(t). For the purposes of this section, only one
1 1

type of failure mode was assumed, namely, a step bias failure occurring

at time 8. Note that because the system is time-invariant and the Kalman

filter is (assumed to be) operating in steady state, the time origin may

be shifted arbitrarily. Therefore, the distinguishability measures are

functions of t - 8, the length of time since the onset of the failure.

Figure 6.2 shows the distinguishability measures AIj and _ j

for a 0.01745 rad (I ° ) bias failure of the elevator. The subscripts i

and j refer to the vehicle control surfaces as defined by Table 5.2.

The five _j's are greater than 0.61075 rad (35 °) for 10 s after the

failure, and are larger than 0.61075 rad (35 ° ) soon after the failure.

This indicates that on a relative basis, an elevator bias failure is
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Figure 6.2. Distinguishability measures for a 0.01745 rad (i °)

bias failure of the elevator
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easily distinguishable from the failure of any other control surface. On

an absolute basis, all the A1j's are larger than 21 by time t - @= I
s, which is quite large. Therefore, we expect that for a well-designed
FDI test, failure detection and isolation of a 0.01745 rad (I ° ) bias

failure of the elevator should take less than I s.

Figure 6.3 shows the distinguishability measures for a 0.01745

rad (I ° ) bias failure of the rudder. Note that all the e4j's are

greater than 1.2564 rad (72 ° ) for the entire time of the plot. That is,

the failure signature of a rudder failure is nearly perpendicular to any

failure signature that can be generated by any other control surface

failure. On the other hand, the _4j's are relatively small. At t - 8

= 2 s, the five A4j's are about 4.0, which is small. This is simply a

reflection of the fact that the signal-to-noise ratio (d 2) of the

rudder failure (when tested against the hypothesis that no failure has

occurred) is small. The conclusion is that if a rudder failure is large

enough to be detected, then it will be easily distinguishable from

failures of the other control surfaces.

Figure 6.4 shows the distinguishability measures for a 0.01745

rad (I ° ) bias failure of the right aileron. This figure is quite

different from the previous two. In particular, the distinguishability

measures associated with the left aileron, the right flap, and the left

flap (corresponding to the subscripts 3, 5, and 6, respectively) are

small. Except for the first 1.0 s following the failure, _26 is less

than 0.26175 rad (15°), _25 is less than 0.1745 rad (10°), and e23 is

less than 0.08725 tad (5°). e23' _25' and e26 all decrease as the time

after failure, t - 8, increases. Therefore, a failure of the right

aileron is not very distinguishable from failures of another wing control

surface (flap or aileron) based on the relative measure _2j"

The failure that most closely resembles the right aileron failure

is, not surprisingly, a failure of the left aileron. As indicated by the

distance measure 423 , a failure of the right aileron is barely distin-
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guishable from a failure of the left aileron. Even after 10 s, 423 is

only 4.6, which is too small to ensure reliable isolation, even by a

well-designed FDI test. Of course, if the failure were larger than

0.01745 rad (I °) 423 would scale proportionally. Nevertheless, these

results indicate that aileron failures are difficult to isolate. This

was clearly evident in the simulation results.

Figure 6.5 shows the distinguishability measures for a I percent

bias failure of the right flap. This figure is qualitatively similar to

Figure 6.4. That is, the distinguishability measures associated with the

other three wing control surfaces (in this case, the left flap, and the

right and left ailerons) are small. In this case, the failure that most

resembles the right flap failure is a failure of the right aileron.

However, the failure of the right flap is somewhat more distinguishable

(as measured by _52 ) than was the failure of the right aileron (as

measured by _23 ). 10 s after the onset of a failure, a52 = 2.98,

whereas _23 = 1.63.

The results presented in this section may be explained in terms of

the aircraft's dynamics. The elevator's primary effect is to produce a

moment about the pitch axis. The other control surfaces do not produce

significant moments about the pitch axis. Therefore, an elevator failure

is easily distinguished from failures of the other control surfaces.

Similarly, the rudder's primary effect is to produce a yawing moment,

whereas none of the other control surfaces produce significant moments

about the yaw axis. Therefore, rudder failures are easily distinguished

from other failures.

On the other hand, the primary effect of the ailerons is to pro-

duce a moment about the roll axis. Furthermore, even though their pur-

pose is to produce lift, flaps produce significant rolling moments when

operated differentially. In that regard, they behave very much like

ailerons. Therefore, it is not surprising that a failure of one of these

four control surfaces is not very distinguishable from failures of the

other three.
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Furthermore, the results concerning distinguishability are

consistent with the FDI simulation results presented for the detection

filter and likelihood ratio tests. They suggest that the ability to

detect and isolate failures is more a function of the physics of the

problem and less algorithm specific.
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SECTION7

A COMPARISONOF FDI ALGORITHMS

7.1 Introduction

The purpose of this section is to make qualitative comparisons of

the FDI algorithms being evaluated for the Restructurable Control System

application. These comparisons are based on the test cases used to

evaluate each algorithm. Thresholds were not selected in all cases and a

general detection and isolation logic was not developed. Only a limited

number of flight conditions and environments were simulated. Yet we

believe that a sufficiently accurate picture of the capabilies of each

algorithm was obtained, allowing the algorithms to be qualitatively

compared. In comparing the four algorithms evaluated, the following

issues have been considered:

• Failure modes (bias, stuck, ramp, etc.) that can be detected.

• Type of failure (rudder, elevator, etc.) that can be detected

and isolated.

• Magnitude (or degree) of failures that can be detected.

• False alarm performance.

• Detection time (time delay between failure and detection).

• Computational burden

• Robustness

• Maturity

These issues will now be addressed individually.
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7.2. Failure Modes

Failure modes describe the behavior of the failed surface. Some

of the important failure modes for restructurable control applications

are stuck, hardover, and bias failures and the loss of part or all of a

surface. The ability of the algorithms to detect these and other failure

modes will be considered here. Note that bias failures were used most

extensively to test the algorithms in this evaluation. Therefore, the

ability of each algorithm to detect other failure modes was based on its

theoretical capabilities in certain instances.

The GLR test uses models of failure modes to detect failures. It

is therefore, most capable of detecting the modes that are modeled.

However, each mode modeled requires a separate bank of filters which

makes modeling even a small number of possible modes computationally

costly. The bias failure mode is the easiest mode to model that is

applicable to control surface failure detection and isolation. The

ability of the GLR test with only the bias failure mode modeled to detect

failure modes other than a bias was considered in Section 5.4.5. A

0.001745 rad/s (0.1 deg/s) rudder ramp failure was detected in 14.90 s

with a 5 s data window.

The OSGLR algorithm is similar to the GLR algorithm except that

the failure modes are represented by a truncated series expansion rather

than a fixed function. The series expansion chosen and the number of

terms used determine how well a particular failure mode can be represent-

ed. In addition, representing the high-frequency portion of the actuator

or control surface failure is not necessary as the plant is a low-pass

filter. Using the first six terms in the expansion, the OSGLR test was

able to detect bias failures. These same six terms should be adequate to

detect most other failure modes. This was demonstrated for a 0.001745

rad/s (0.1 deg/s) rudder ramp failure which was detected in 13.08 s.

One advantage of both the unmodified and the modified detection

filter is that all failure modes should be detectable as the residual

direction is independent of the failure mode, depending only on the
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surface which failed. However, for the unmodified detection filter the
planar test used to detect failures assumedthat the failed control

surface was not oscillating about the desired control surface position.
Even with this restriction, the unmodified detection filter should still
be able to detect most failure modes.

7.3 Type of Failure

All four algorithms were able to detect elevator, rudder, right

and left aileron, and right and left flap failures. The left and right

elevators were assumed to move together as a unit. Elevator failures

could be isolated by all four algorithms as could rudder failures. How-

ever, isolating wing surface (aileron and flap) failures was difficult

for all of the algorithms. The modified detection filter seemed to

display some ability to distinguish between wing surfaces for moderate

failures (0.0349 tad (2 ° ) aileron bias, 10% flap bias) in minor turbu-

lence. Based on the few test cases simulated, the modified detection

filter could isolate a wing surface failure to one of two possible

surfaces. The detection filter algorithm could eliminate one wing

surface from consideration at most. It was demonstrated that false

isolation could result with the GLR algorithm. Isolation to a specific

wing surface is possible with the OSGLR algorithm with a significant

delay of perhaps 10 s or more.

7.4 Magnitude of Failure

The magnitude of the failures that can be detected depends on the

sensor noise, disturbances, and modeling errors. The GLR and OSGLR

algorithms were able to detect moderate (0.01745 rad(1 °) elevator, rudder

and aileron) bias failures in the presence of noise and severe turbulence

(a = 1.98 m/s or 6.5 ft/s). The OSGLR algorithm appears to be more

sensitive to modelling errors than does the GLR algorithm.
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Turbulence and modeling errors significantly degraded the
ability of the detection filter to detect failures. Moderate (-0.0349

rad or -2 ° elevator, aileron, and 10% flap) failures could be detected in

minor turbulence (a = 0.3 m/s or I ft/s). However, detecting moderate

failures in severe turbulence was more difficult. While hardover

failures were not tested, they should be easily detected even in severe

turbulence. Modeling errors also degraded the ability of the detection

filter to detect moderate failures.

failures were no longer detectable.

should still be possible.

In fact, some moderate aileron

Detection of hard failures, though,

The modified detection filter could also detect moderate failures

in minor turbulence. The detection of failures in severe turbulence or

with modeling errors would require dynamic thresholds or a method of

estimating the nominal no-failure residuals caused by severe turbulence

and modeling errors.

7.5 False Alarm Performance

False alarm rates for the GLR test and the detection filter can

only be determined via simulation because analytic estimates are not

available. Some analytic estimates which assume Gaussian noise, no

disturbances, and no mismodeling are available for the OSGLR algorithm.

Still, the false alarm rates for the OSGLR algorithm due to disturbances

and mismodeling would have to be determined by simulation. However,

determining even large false alarm rates using simulation is difficult

because of the limited number of conditions that can be tested and the

large computational burden.

Specific false alarm rates were not determined for all of the

algorithms. Thresholds were not selected in all cases and even if they

had been, the simulation test cases were of insufficient number to be

able to estimate any false alarm rates. Instead, the false alarm per-
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formance of each of the algorithms will be qualitatively assessed by its

sensitivity to noise, turbulence, and modeling errors. Algorithms that

are sensitive to these effects can be expected to have larger false alarm

rates than algorithms that are less sensitive.

The OSGLR and GLR algorithms were least sensitive to noise and

turbulence. This is true for two reasons: the system model incorporated

into these algorithms included a turbulence model, and a Kalman filter is

used to provide an estimate of the state. The OSGLR test was more

sensitive to modeling errors than the GLR test.

The unmodified detection filter is sensitive to turbulence and

modeling errors. The modified detection filter is sensitive to modelling

errors and very sensitive to turbulence. As mentioned previously, the

modified detection filter would require dynamic thresholds or a method of

estimating the nominal no-failure residuals caused by severe turbulence

and modeling errors to compensate for its sensitivity to these errors and

disturbances.

7.6 Detection Time

The failure detection times depend on the magnitude of the fail-

ure, the sensor noise, the disturbances present, and the thresholds

selected. While the detection times were comparable for all of the

algorithms, the GLR and OSGLR algorithms were tested in severe turbulence

as opposed to the detection filter algorithms which were tested in minor

turublence. Detection times for the GLR and OSGLR algorithms were on the

order of a half-second or less for .01745 rad (I ° ) elevator and right

aileron bias failures in severe turbulence for the thresholds

selected (cf. Table 5.3).

Higher thresholds would probably be required to provide adequate

false alarm performance. Even with higher thresholds, detection times

should be on the order of a second, if the same thresholds are used for

detecting rudder failures as for other control surface failures,
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detection times would be much longer since the rudder decision functions
are smaller than the other control surface decision functions for the

samemagnitude failure. However, as the effects of mismodeling affect

the rudder decision functions less than the other decision functions,

smaller thresholds could be used, allowing the rudder detection times to
be on the sameorder.

Detection times for both the modified and unmodified detection

filters also depend on the filter eigenvalue chosen and the time constant

of the low-pass filter, if any, required to suppress noise in the resid-
ual. Thresholds were not chosen for the detection filter. The detection

times were estimated based on the time delay between failure onset and a
clear indication that a failure has occurred. For the unmodified

detection filter, approximately two seconds would be required to detect a

0.0349 rad (2° ) elevator or right aileron failure in minor turbulence

with the residual being low-pass filtered with a time constant of one

second. A 0.0349 rad (2 ° ) rudder failure would take a second longer.

Harder failures could be detected faster as much less, if any, filtering

would be necessary. On the other hand, the detection and isolation of

small magnitude failures would require heavy low-pass filtering for noise

suppression which would impact the failure detection time because of the

relatively long time required to reach steady state. Detection times for

the modified detection filter would be on the same order as for the

unmodified detection filter.

7.7 Computational Burden

The computational burden of all of the algorithms has not been

quantitatively determined. Yet, some approximate comparisons will be

made here. Each of the algorithms consists of a filter of the system to

generate a residual, some type of residual processing, and a test for

failures. The filter portion of each algorithm is computationally

equivalent. Therefore, the relative computational burden can be deter-

162



mined by examining the computations required to process the residual and

to test for the failure.

The least additional computations are required by the unmodified

detection filter. The residual processing would likely consist of

several banks of low-pass filters to give the algorithm the ability to

quickly detect hard failures and still detect soft failures. To test for

a failure, the residual must be projected onto the failure signature

plane segment for each control surface.

The modified detection filter requires slightly more computational

processing than the detection filter. The additional computations result

from the secondary filtering of the residual which restores the property

of a unidirectional residual in response to a control surface failure.

However, fewer computations are required to project the residual onto a

signature direction than onto plane segments.

The relative computational burden of the OSGLR algorithm is

primarily determined by the number of actuators or control surfaces and

by the number of terms in the series used to represent the possible fail-

ure modes. The residual is used to drive an additional filter for each

actuator to produce an information vector. The dimension of each of

these information vectors is the number of terms used in the series

expansion to represent the failure mode. The test for a failure in each

actuator or control surface is the information vector weighted by an

information matrix. For the time-invariant case considered here, the

information matrix is a constant matrix. For a large number of both

actuators and terms used in the series, the computational burden would be

very heavy. However, keeping only the first six terms of the series

expansion was found to be adequate in the present application. In addi-

tion, only six control surfaces were considered in this evaluation.

Still, for this case, the computational burden of the OSGLR algorithm is

at least 50% greater than the unmodified detection filter.
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The relative computational burden for the GLR algorithm is mainly

a function of the number of actuators, the number of failure modes

modeled, and the data window chosen. Each actuator requires N correla-

tion receivers for each failure mode modeled where N is the length of the

data window divided by the time step. For a half second window and a

0.02 second time step, 25 correlation receivers would be required per

actuator per failure mode. For six actuators and only modeling the bias

failure mode, 150 correlation receivers were required for this applica-

tion. With 150 correlation receivers, the GLR algorithm was more

computationally costly than the 0SGLR algorithm. However, a half second

window was too short for adequate FDI performance. A realistic data

window of two seconds perhaps would make the GLR algorithm computational-

ly very expensive. Table 5.4 indicates that it requires approximately 18

times more computation than the 0SGLR test.

7.8 Robustness

As each of the algorithms considered here relies upon a linear

model of the system to detect and isolate failures, these algorithms will

be sensitive to modeling errors. The OSGLR test was shown to be more

sensitive to modelling errors than the GLR test in Section 5.4.6. The

unmodified detection filter was unable to detect a right aileron (0.0349

rad or 2 ° bias) failure with the aircraft flying at an off-nominal cruise

condition. Modeling errors caused the modified detection filter to

produce large residual projections.

Another source of modeling errors for the GLR and OSGLR algorithms

are the failure mode models incorporated into each of the algorithms.

The OSGLR algorithm is likely to be robust to actuator failure mode

modeling errors as the model is sufficiently general to represent most

modes adequately. However, the GLR algorithm required specific models of

failure modes such as bias failures. As only bias failures were modeled

in the present application, the GLR algorithm is likely to be less robust

to other failure modes than the other three algorithms.
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7.9 Maturity

The GLR algorithm is mature in both theory and in application.

The OSGLR algorithm is almost as mature in theory as the GLR algorithm.

However, as the OSGLR test is a recently developed FDI algorithm, there

is very little experience in applying it.

Detection filter theory is mature for restructurable controls appli-

cation to linear, time-invariant systems with no input-to-output

coupling. However, no theory exists for applying the detection filter to

time-varying systems. In addition, for systems with input-to-output

coupling, systematic methods of using the extra degrees of freedom in the

gain matrix calculation (which result from having more measurements than

states) and scaling to improve detection filter performance are needed.

Finally, there is limited experience in applying the detection filter

with only a couple of applications having been reported.

The modified detection filter, developed for this application,

needs additional investigation to be considered mature in both theory and

application. The problems of time-varying systems, improving performance

through scaling, and the extra degrees of freedom in the gain matrix

calculation mentioned above for the detection filter also apply to the

modified detection filter.

7.10 Conclusions

The eight issues addressed in this memorandum are summarized in

Table 7.1. The GLR and OSGLR algorithms performed the best, especially

in severe turbulence. However, the computational burden of the GLR

algorithm is heavy and its ability to isolate wing surface failure modes

is uncertain. An additional advantage of the OSGLR algorithm is that

analytic false alarm rate results are available. The most significant

advantage of the detection filter algorithms is their relatively low

computational processing requirements. If the sensitivity of the
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detection filter algorithms to turbulence could be reduced, their

performance might be comparable to the GLR and OSGLR algorithms.

However, until this is accomplished, the OSGLR algorithm is the most

promising of these four algorithms evaluated.
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SECTION8

AUGMENTATIONOF ANALYTIC FDI SCHEMES FOR IDENTIFYING FAILURES

IN FUNCTIONALLY REDUNDANT CONTROL SURFACES

8.1 Introduction

A second program task is to develop a system monitoring strategy

to implement the failure detection and isolation techniques which identi-

fies the mix of sensors and analytic redundancy required. Issues

associated with this second task are discussed in this section. It has

been shown that analytic FDI schemes can have difficulty in fully

isolating failures among control surfaces that are functionally

redundant. Thus, it was difficult to decide between flap and aileron as

the failed wing surface. The quantitative measures developed to

determine the maximum discrimination of such failures showed the inherent

difficulty. It can be expected then that any intentional maneuvering for

the purpose of isolating failures of such surfaces using analytic FDI

would be of only limited value, even if practical otherwise.

The value of actually isolating a failure of a surface that is

functionally redundant might be questioned to some degree. After

a surface fails, it is required that sufficient capability remain to end

the flight in an acceptable way. If there is sufficient capability (and

if this can be appropriately determined) then complete failure isolation

might be considered optional. But there could be reasons why isolation

to a specific surface would be preferred. It is likely that a failure

could be more quickly and appropriately compensated if it were fully

isolated. Moreover, full isolation might allow for more flexibility and

confidence in continuing a flight after a failure has occurred.
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There should be thorough investigation of the merits of dispensing

with complete isolation when functional capability can be reasonably

assured. There has been someconsideration of in-flight dynamics testing
(Reference 14) and at least a limited demonstration (Reference 15).

Pre-flight dynamic testing has been standard for military aircraft

(Reference 15). Dynamic testing could eventually provide information

quickly and accurately on functional capability of the aircraft while in

flight. In what follows, however, full isolation capability is taken as

the simpler and more desirable option.

A discussion of fault tolerance in current aircraft actuation

systems and of the role of analytic FDI schemes follows. Augmenting

analytic schemes with direct measurements of control surface position is

also considered.

8.2 Fault Tolerance in Current Aircraft Actuators

Direct duplication of actuation has been the practice for most

military and large commercial aircraft for quite some time. Whole

actuation channels may be duplicated several times. There have been

several methods devised for dealing with failures of elements in these

channels. The subsystems and channels must be substantially identical in

order to give the same control inputs and to enhance the performance of

the system. Some differences are inevitable because of tolerances, and

these must be taken into account so that disengagement of a channel will

occur only under genuine failure conditions. The performance of the

subsystems and channels is continuously adjusted, in a process called

equalization (Reference 16). As a part of equalization, inter-channel

differences are minimized through feedback. If a difference is too

great, then the failed channel is disengaged or bypassed. Frangible

elements (shear pins, for example) have also been used, allowing a jammed

actuator to be broken by the others. Thus, a large degree of actuator

FDI (and reconfiguration) already takes place on a local level, before

the surface has actually been moved. This can be expected to continue.
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8.3 The Role of Analytic FDI

Analytic FDI schemes, such as those evaluated in this program,

look for control surface failure signatures in the whole-system

dynamics. That they detect failures at the system level (ultimately the

most important one) is what makes these schemes potentially of great

value. They can be considered most useful in the context of aircraft

actuator FDI in identifying failures that the lower-level FDI schemes

have missed. Such failures might include inaccuracy or breakdown of the

local schemes and actual physical damage to the control surface itself.

Outputs from the local automatic schemes might be of some use in

augmenting the analytic algorithms for the purpose of identifying certain

types of failures. However, it can be expected that this information

could be of limited value in detecting and isolating some significant

failures.

8.4 Augmentation of Analytic FDI Schemes with

Actuator Position Measurements

The concern here is with failures that manifest themselves in some

way in the system dynamics. It is reasonable to assume that the local

FDI scheme, having failed to identify and compensate, is not an

independent source of information to the overall FDI strategy. Such

"failures" as actuator bias, jamming, or inappropriate overall actuation

gain might be identifiable through use of surface position transducers.

Position sensors mounted on or near the control surface itself could

be considered to provide failure information on a level just below that

of the whole system. Information from these transducers can be expected

to be reasonably easy to obtain and use. Position transducers of the

synchro, potentiometer, and linear variable differential (LVDT) types

have been extensively used and are simple (Reference 17). To have these

position transducers be an independent source of information on any type

of failure, however, they should not be part of the actual flight control

loop.
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Since WWII, position transducers have provided feedback in

aircraft flight control systems (Reference 18). They have typically been

mounted on primary or secondary actuation output shafts. There, they

could be used for limiting and nulling control as actuator positioning

commands were satisfied. The currently favored Control Augmentation and

Fly-By-Wire flight control systems have as a primary characteristic that

the flight control loops are no longer closed using actuator position

information but using information from aircraft attitude and position

sensors (Reference 18). Depending upon the extent of their continued use

in the flight control system, actuator position sensors could serve as

more or less independent sources of FDI information.

Flight control systems in which control loops are closed using

aircraft dynamic information will automatically compensate for some

actuator failures, such as small surface bias errors. To identify larger

biases, comparing actuator position expected (using a reference model)

with that actually measured by position transducers might suffice to iso-

late a failed surface. Alternately, in a separate actuator positioning

flight control mode in secure flight conditions, commanding the surface

to move to some absolute position or to more a certain fixed amount could

suffice to detect and isolate biases or incorrect gains. If the surface

is jammed, FDI using outputs from position transducers is also possible,

using similar tests.

Employing an FDI scheme based on surface position measurements

involves additional hardware and perhaps the design of separate flight or

test modes. It should be stressed, too, that position transducers would

still be of only limited use in identifying certain types of failures,

such as actual control surface damage.

Position sensors could be used as a primary source of FDI informa-

tion, with position measurements obtained continually. Actuator position

information could also be used on some lower FDI decision level. If a

sensitive whole-system FDI scheme were available, however - and this
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would ideally be preferred - then direct surface position sensors could

be used in augmentation to provide information for complete failure

isolation, eliminating the uncertainties inherent in fully identifying

the failure of a functionally redundant surface. Only a limited number
of transducers might then be required, and limited use madeof their

information. Use of position sensors to augmentanalytic FDI schemes
also implies that each schemecould serve as a limited check on the
other.

8.5 Conclusions

It has been shown that analytic FDI schemes can have difficulty in

isolating failures among functionally redundant control surfaces.

Complete isolation might not be needed if the presence of adequate

functional capability can be determined quickly and accurately. This

point deserves more investigation. Full isolation might lead to simpler

or better compensation for a failure, however. Then, depending upon the

type of usage of control surface position transducers in the flight

control system, they can be used to provide information for identifying

actuator failures. Analytic FDI schemes will always be of great value as

they detect failures based on whole-system dynamics. Where they cannot

fully isolate a failure, actuator position information could be useful.

Whether actuator position transducers can provide useful augmenta-

tion to analytic FDI schemes for the C-130 should be investigated. The

role that such transducers now have in the flight control system should

first be determined. Then, if they are not a primary part of the flight

control loop, selective addition of the sensors should be considered,

starting with the wing surfaces so that their failures can be fully

isolated.
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SECTION 9

SUMMARY AND CONCLUSIONS

This report has described work performed with regard to the eval-

uation of FDI algorithms for application to aircraft restructurable

control systems. Three algorithms were evaluated: the detection filter,

the Generalized Likelihood Ratio test and the Orthogonal Series General-

ized Likelihood Ratio test. In addition, a modification to the detection

filter, to produce unidirectional failure residuals for systems with

direct input-output coupling, was also investigated. This modification

is relevant since the use of accelerometer measurements for FDI in

aircraft systems results in direct input-output coupling. The algorithms

were evaluated and compared using results from a nonlinear simulation of

a C-130 aircraft. The issue of the distinguishability of failures was

also addressed and measures defined which permit an a priori determina-

tion of the ability to do this for a specific system. Considerations in

the development of a system monitoring strategy were also discussed.

The major conclusion which may be drawn from the results of this

study is that algorithmic failure detection and isolation may be feasible

for restructurable control applications. This conclusion must be quali-

fied by the results obtained during this study, which have been basically

limited to a single operating condition and to the investigation of a

small subset of the potential failures. In particular, failure detection

does not appear to be a problem. Each of the algorithms was able to

detect small elevator, rudder, aileron and flap failures for the C-130

aircraft in turbulence. The isolation of control surface failures was
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not a problem for elevator and rudder failures. However, difficulties

arose in the isolation of wing surface, i.e., aileron and flap,

failures. These failures have a similar effect on the responses of the

aircraft system. The OSGLR algorithm performed best in this regard and

the isolation of these failures was possible, although a relatively long

time was required to do this. It was difficult to isolate these failures

with the other algorithms, at best, and it was shown that false isolation

may occur with the GLR test. This conclusion highlights the potential

need to augment the analytic FDI algorithms with the direct measurement

of failures using, for example, position sensors for some of the control

surfaces.

The OSGLR algorithm performed best of those evaluated. The nature

of the algorithm and its basis upon a series expansion implies that most

failure modes should be detectable. All failure types investigated

during this study were detected and were isolated, although there was a

long time delay associated with the wing surface failures. Bias failures

on the order of a degree of surface deflection were detected in less than

a half a second for a system without modeling errors. The computational

burden associated with this algorithm is moderate relative to the others,

its false alarm rate can be analytically estimated and the theory

associated with it is mature. On the negative side, the robustness

properties of the OSGLR test are poor but so are those of the other

algorithms. In addition, the OSGLR algorithm has not been previously

applied to any system.

The GLR algorithm also performed well in the C-130 application.

The major drawbacks associated with it are its heavy computational burden

and the uncertainty associated with its ability to isolate wing surface

failures. The most significant advantage of the detection filter algor-

ithms is their relatively low computational processing requirements. If

the sensitivity of these algorithms to turbulence could be reduced, their

performance might be comparable to the GLR and OSGLR algorithms.
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APPENDIXA

C-130 LINEARMODELDEVELOPMENT

A.I Introduction

Each of the FDI algorithms investigated under the Restructurable

Controls Program requires a linear model of the nonlinear system for

design or implementation. The linearization technique used to generate

linear models of the C-130 aircraft dynamics is described and some

comparisons of the linear model and the nonlinear system are presented.

A.2 Linearization Technique

The nonlinear system consists of dynamics which describe the

motion of the aircraft and output equations which describe the

measurements as functions of the states and the controls. The nonlinear

dynamics can be functionally represented by

x = f(x,u) (A.I)

The output equations are of the form

= g(x,u) (A.2)

The outputs of the linear model were chosen to be airspeed,

acceleration at the cg along the y and z body axes, angular velocity

about the body axes, attitude, and altitude. The inputs of the linear

model are a subset of the inputs for the nonlinear model. The inputs
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chosen for the linear model include the elevator, rudder, left and right

aileron, and left and right flap where each aileron and each flap is

allowed to move independently of the other aileron or flap. Elevator

trim tabs and engine throttle setting were not included as elevator trim

tab and engine failures were not considered. The states chosen for the

linear model differ slightly from the nonlinear system. Airspeed, angle

of attack, and sideslip angle were selected to be states of the linear

model instead of the velocities along each of the body axes. The reason

for choosing airspeed, angle of attack, and sideslip angle was that there

is a closer relationship between these three variables and the first

three measurements mentioned previously (airspeed and the acceleration

along the y and z body axes).

To develop a linear model, the nonlinear system is expanded in a

Taylor series about a nominal point (_o,_o), neglecting second and higher

order terms.

_f _f

= fCx,u) +_ (_u)(x x ) +_ Cx,_)(u - u ) (A3)-- ----O -- --O -- --O

8g 8g

Y = gC_o'U--o ) + _X-- (X_o,U__o)CX - _O ) + _U-- (_O,_o)(U - U ) CA.4)

TO put Eq. (A.3) and (A.4) in more standard form, define

Ax - x - x (A.5)

Au -- u - u (A.6)

_f

A _ _ (x,_)

8f

B _-- _ (x,u)

(A.7)

(A.8)
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c - (X'ao) (A.9)

ag
D - _ (x,u) (A.IO)

Also, differentiate Eq. (A.5), assuming the nominal point remains fixed.

= x

Combining Eq. (A.3) through (A.11) results in the form

_ = _f(_o,Uo) + AAx_ + BAu_ (A.11)

y = g(_o,X_o) + CAx + DAu (A.12)

The A, B, C, and D matrices which describe the linear model can

either be calculated by analytically determining the partial derivatives

and then evaluating the partial derivates or by numerically approximating

the partial derivatives about the nominal point. As the C-130 nonlinear

dynamics contain many lookup tables as opposed to explicit functions of

the states and the controls, the partial derivatives were numerically

approximated in the following manner. Define x i to be the ith state,

fi(_,_) to be the nonlinear function which describes the derivative of

the ith state, and q_i to be a column vector with unity in the ith row

and zero in the other rows. Let aij be the element in the ith row and

the jth column of the A matrix. Then aij is numerically approximated

by

_f'1 f.(xl--o + %X]p'U--o)- fi --o(X- --3UX]p,_O)

aij - _x. (X-o'U-o) _ 2x (A.13)

] ]p
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where Xjp is a perturbation in jth state from the nominal. This

perturbation must be chosen to produce a good approximation to the

partial derivative. The B, C, and D matrices were calculated similarly.

A.3 Results

Figures A.I and A.2 present simulation runs which compare the

linear and nonlinear system responses. The nominal point used to

generate the linear model is with the C-130 aircraft flying straight and

level with an airspeed of 77.2 m/s (150 knots) at an altitude of a

304.8 m (1000 ft). Figure A.I investigates the quality of the A matrix

linearization by perturbing only the states. The nonlinear and linear

response for perturbations in airspeed, angle of attack, sideslip angle,

and the angular velocity of the vehicle expressed in the body coordinate

system are compared. The dynamics are well represented although the

linear and nonlinear models begin to diverge after about 60 s. There

are, however, nonlinear dynamics which are poorly represented. In the

nonlinear system, a perturbation in the lateral dynamics also excites the

longitudinal dynamics while the linear model is unable to represent this

cross-coupling because of the nonlinearities involved.

Figure A.2 presents comparisons of linear and nonlinear responses

for a perturbation in the rudder control input. Note the small changes

in most of the states and outputs. The quality of the linear response is

dependent on roll. Once roll becomes "large", the cross-coupling between

the lateral and longitudinal dynamics causes the linear response to

diverge from the nonlinear response.
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APPENDIX B

THE DISCRETE-TIME DETECTION FILTER

AS the detection filter was implemented on a digital computer, the

detection filter was designed as a discrete-time system. While detection

filter theory is not strictly valid for discrete-time systems, a satis-

factory design is possible if the sampling rate is sufficiently rapid.

This appendix will simply state the extension to discrete time. For more

detail and explanation, see Reference 8.

The first step in designing a discrete-time detection filter is to

describe the continuous linear model

= Ax + Bu (B.1)

Z = C_ + Dy_ (B.2)

as a discrete-time system. This is commonly done by converting the state

differential equation into a difference equation. This conversion

results in a discrete-time model of the form

x(k+1) = #x(k) + Fu(k) (B.3)

z(k) = C_(k) + D_(k) (Bo4)
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where _(k), _(k), and _(k) are the state, input, and measurementvectors

at sampling time _. For constant sampling interval, At, the sampling

time maybe expressed as _ = k.At where k = 0,1,2,3, .... The matrix

is referred to as the state transition matrix as it describes how the

state propagates independent the effect of the control inputs over the

sampling interval At. The input matrix, F, describes the effect of the

control vector on the state over the sampling interval. If u(t) only

changes at the sampling times _, then the state difference equation,

Eq. (B.3), exactly represents the state differential equation, Eq.

(B.I). However, if _(t) is changing over the sampling interval, Eqo

(Bo3) only approximates Eq. (Bol). In this case, the sampling interval

At must be sufficiently small so that the assumption of u(t) being

constant over the sampling interval is valid. The sampling interval

chosen for design and implementation of the detection filter in this memo

was 20 milliseconds. With this sampling interval, the control input

vector _(t) should be approximately constant over the interval.

Given the discrete-time linear model, the detection filter proper-

ties and design are analogous to the continuous-time case presented in

Section 3. Only actuator failures for the case where there is input-

output coupling will be considered here. Consider a failure in the ith

actuator. Before, the actual control surface deflections, u(t), were

expressed as the sum of the expected control surface deflections input to

the detection filter, u(t), and the unexpected ith control surface de-

flection n(t). Now, _(t), _'(t), and n(t) will be assumed to be piece-

wise constant functions, only changing at sampling times t k. Therefore,

the actual control surface deflection at _ is

u(k) = u'(k) + e.n(k) (B.5)
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where _'(k) and n(k) are the expected control surface deflection to the

detection filter and the difference between the actual and expected ith

control surface deflection at sampling time _, respectively. Again, e.-l
is a column vector with zeros in every row except for a one in the ith

row. The discrete-time error dynamics produced by this failure are

q(k+1) = (_ - KC)q(k) + (_i - Kd.)n(k) (B.6)
-- -- m --I

r(k) = Cq(k) + d.n(k) (Bo7)
-- m m I

where q(k) and _(k) are the discrete filter state error and residual

respectively. _i is the ith column of the F matrix.

If a detection filter can be designed for this system and if u(t),

_'(t), and n(t) only change at sampling times _ such that Eq. (B.5) is

satisfied, the (_i - Kd.) term in Eq. (B.6) will produce a unidirectional

residual. The direction of the residual will be C(_i - Kd.)° Therefore,

the signature produced by a failure in the ith control surface can be

constrained to a plane spanned by C(Ti - K d.) and d.. This is

identical to the continuous-time results presented in Section 3.2 except

that the ith column of the continuous input matrix, bi , has been replaced

by the ith column of the discrete input matrix, _i" However, _(t),

_'(t), and n(t) have been assumed to be piecewise constant functions

changing at the sampling times tk. As before, the sampling interval must

be sufficiently small so this assmption is valid.

For a fully measured system, there are only two minor differences

in designing a discrete detection filter as compared to designing a

continuous detection filter (presented in Section 3.3).

(I) The filter eigenvalue must be chosen in discrete-time domain.

(2) The gain matrix K must be calculated to satisfy the

relationship

- KC = lI
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